Answer:
6. x = 15
7. JL = 78
Step-by-step explanation:
6. 8x - 23 = ½(10x + 44) (midsegment theorem)
Multiply both sides by 2
2(8x - 23) = 10x + 44
16x - 46 = 10x + 44
Collect like terms
16x - 10x = 46 + 44
6x = 90
Divide both sides by 6
x = 90/6
x = 15
7. MN = 5x - 16
JL = 4x + 34
MN = ½(JL) (midsegment theorem)
5x - 16 = ½(4x + 34) (substitution)
2(5x - 16) = 4x + 34
10x - 32 = 4x + 34
Collect like terms
10x - 4x = 32 + 34
6x = 66
x = 66/6
x = 11
JL = 4x + 34
Plug in the value of x
JL = 4(11) + 34 = 44 + 34
JL = 78
Answer:
25m + 3
Step-by-step explanation:
Break the bracket, you will get:
- -25m - (-3)
= + 25m + 3
= 25m + 3
Hope this helped :3
Answer: Oliver is correct
Step-by-step explanation:*mine doesn’t have the line and stuff to show u how to explain it*
Splitting up [0, 3] into
equally-spaced subintervals of length
gives the partition
![\left[0, \dfrac3n\right] \cup \left[\dfrac3n, \dfrac6n\right] \cup \left[\dfrac6n, \dfrac9n\right] \cup \cdots \cup \left[\dfrac{3(n-1)}n, 3\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%20%5Cdfrac3n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac3n%2C%20%5Cdfrac6n%5Cright%5D%20%5Ccup%20%5Cleft%5B%5Cdfrac6n%2C%20%5Cdfrac9n%5Cright%5D%20%5Ccup%20%5Ccdots%20%5Ccup%20%5Cleft%5B%5Cdfrac%7B3%28n-1%29%7Dn%2C%203%5Cright%5D)
where the right endpoint of the
-th subinterval is given by the sequence

for
.
Then the definite integral is given by the infinite Riemann sum

Answer:
3x = 4-x "hope this helps"
Step-by-step explanation: