Answer: True
Explanation:
The matter exists as solid, liquid or gas. These are called the states of matter. The change of matter from one state to another can be achieved by heating or cooling.
The solid state can be converted into liquid state by providing heat to solid. The heat will make the particles move farther, resulting into liquid state.
Similarly when liquid state is provided heat, it changes to gaseous state. The heat will make the particles move much more faster.
Thus the statement that when heat flows to an object, it can change states is True.
<u>Explanation:</u>
A balanced chemical equation is one where all the individual atoms are equal on both sides of the reaction. It follows the law of conservation of mass.
When potassium phosphate reacts with silver nitrate, it leads to the formation of silver phosphate and potassium nitrate.
The balanced chemical equation follows:

When barium bicarbonate reacts with calcium hydroxide, it leads to the formation of barium carbonate, calcium carbonate and water
The balanced chemical equation follows:

Answer: anemia because Marie curie died of anemia
Answer:
It ability to react with oxygen.
Explanation:
Freezing point and hardness can be altered. Physical properties can also be reversed. Chemical properties on the other hand cannot. The product after reaction with an element never changes.
Answer: Rutherford.
Explanation:
It was the scientist Ernest Rutherford who, by 1911, performed the gold foil experiment in which α particles were shoot to a thin foild of gold.
That experiment showed that although most α particles passed through the thin gold foild, some of them were deviated in small angles and some other were bounced backward.
The conclusion of the experiment was that the atom contained a small dense positively charged nucleous and negative particles (electrons) surroundiing the nucleous. Being the space in between the nucleous and the electrons empty.
Before Rutherford's experiment the model of the atom was that of the plum pudding presented by J.J Thomson, in which the atom was a solid positively charged sphere with embeded negative charge uniformly distributed in it.