<span>he specific heat capacity of liquid water is 4.186 J/gm K.</span>
Answer:
N₂ = 6.022 × 10²³ molecules
H₂ = 18.066 × 10²³ molecules
NH₃ = 12.044 × 10²³ molecules
Explanation:
Chemical equation;
N₂ + 3H₂ → 2NH₃
It can be seen that there are one mole of nitrogen three mole of hydrogen and two moles of ammonia are present in this equation. The number of molecules of reactant and product would be calculated by using Avogadro number.
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
Number of molecules of nitrogen gas:
1 mol = 6.022 × 10²³ molecules
Number of molecules of hydrogen:
3 mol × 6.022 × 10²³ molecules/ 1 mol
18.066 × 10²³ molecules
Number of molecules of ammonia:
2 mol × 6.022 × 10²³ molecules/ 1 mol
12.044 × 10²³ molecules
Answer:
D =Average atomic mass = 10.801 amu.
5) True
Explanation:
Abundance of B¹⁰= 19.9%
Abundance of B¹¹ = 80.1%
Atomic mass of B¹⁰ = 10 amu
Atomic mass of B¹¹ = 11 amu
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (10×19.9)+(11×80.1) /100
Average atomic mass = 199 + 881.1 / 100
Average atomic mass = 1080.1 / 100
Average atomic mass = 10.801 amu.
2)A chemical reaction is one in which a new elements is created
True
False
Answer:
In chemical reaction new substances are created.
For example:
Photosynthesis:
It is the process in which in the presence of sun light and chlorophyll by using carbon dioxide and water plants produce the oxygen and glucose.
Carbon dioxide + water + energy → glucose + oxygen
water is supplied through the roots, carbon dioxide collected through stomata and sun light is capture by chloroplast.
Chemical equation:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
it is known from balanced chemical equation that 6 moles of carbon dioxide react with the six moles of water and created one mole of glucose and six mole of oxygen.
Answer:
The emission spectrum lines are the changes in the quantum energy levels of the single electron in the Hydrogen atom.
Explanation:
Electrons move around the hydrogen atom in electron waves patterns. These waves occur in distinct quantum energy levels.
The change from one quantum energy level to another energy level has a definite energy level change. There is a wave length associated with each change in energy levels. These wave lengths have a color associated with them.
Low energy level changes have long wave lengths associated with them giving red and orange colors.
High energy level changes have short wave lengths associated with them giving blue and violet colors.
Note each atom has a unique emission spectrum associated with the energy levels and electron structure of the atom. Helium was first discovered by looking at its emission spectrum as seen in the sun.
Explanation: