Answer:
The heat loss per unit length is 
Explanation:
From the question we are told that
The outer diameter of the pipe is 
The thickness is
The temperature of water is
The outside air temperature is 
The water side heat transfer coefficient is 
The heat transfer coefficient is 
The heat lost per unit length is mathematically represented as
![\frac{Q}{L} = \frac{2 \pi (T - Ta)}{ \frac{ln [\frac{d}{D} ]}{z_1} + \frac{ln [\frac{d}{D} ]}{z_2}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%5Cpi%20%28T%20-%20Ta%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_1%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_2%7D%7D)
Substituting values
![\frac{Q}{L} = \frac{2 * 3.142 (363 - 263)}{ \frac{ln [\frac{0.104}{0.002} ]}{300} + \frac{ln [\frac{0.104}{0.002} ]}{20}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%2A%203.142%20%28363%20-%20263%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B300%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B20%7D%7D)


Answer:
5.09 x 10⁵ Nm²/C
Explanation:
The electric flux φ through a planar area is defined as the electric field Ε times the component of the area Α perpendicular to the field. i.e
φ = E A
From the question;
E = (8.0j + 2.0k) ✕ 10³ N/C
r = radius of the circular area = 9.0m
A = area of a circle = π r² [Take π = 3.142]
A = 3.142 x 9² = 254.502m²
Now, since the area lies in the x-y plane, only the z-component of the electric field is responsible for the electric flux through the circular area.
Therefore;
φ = (2.0) x 10³ x 254.502
φ = 5.09 x 10⁵ Nm²/C
The electric flux is 5.09 x 10⁵ Nm²/C
Wave Interference or Interference of wave