Answer:
d) 1/4 F
Explanation:
The magnitude of electrostatic force between stationary charges is described by Coulomb's law. This law states that this force is proportional to the magnitudes of the charges:

When each of the spheres has lost half its initial charge, we have:

So, the new electrostatic force is:

B) The velocity of a car reduced from 50 km/h to 35 km/h over one minute
The work done by a constant force in a rectilinear motion is given by:

where F is the magnitude of the force, d is the distance and θ is the angle between the force and the displacement vector.
In this case we have two forces then we need to add the work done by each of them; for the first force we have a magnitude of 17 N, a displacement of 12 m and and angle of 0° (since both the displacement and the force point right); for the second force we have a magnitude of 36 N, a displacement of 12 m and an angle of 30°. Plugging these values we have that the total work is:

Therefore, the total work done is 578.123 J and the answer is option E
Answer: v = 4.4 m/s
Explanation:
In the absence of friction, the total mechanical energy will be constant
KE₀ + PE₀ = KE₁ + PE₁
0 + mg(6) = ½mv₁² + mg(5)
½mv₁² = mg(6 - 5)
v = √(2g(1)) = 4.4 m/s
Answer:
What are we supposed to find, if it is kinetic energy then this is the solution.
K.E=1/2mv^2
K.E= kinetic energy
M=mass
V=velocity
K.E =0.5*55*0.6^2
K.E=9.9J
Explanation: