Answer:
12500 V
Explanation:
The electric field in the gap of a parallel-plate capacitor is uniform, so the following relationship between electric field strength, potential difference and distance can be used:

where
is the potential difference between the plates
E is the electric field strength
d is the distance between the plates
For the capacitor in this problem, we have


Substituting, we find

The cornea is responsible of refraction light 1/3 in eye.
<h3>What is the function of the cornea?</h3>
In addition to the protective function, it plays a fundamental role in the formation of vision. Transparent, it works like a lens over the iris, focusing light from the pupil towards the retina.
Normally, the cornea and lens deflect (refract) incoming light rays, focusing them on the retina. The shape of the cornea is fixed, but the lens changes shape to focus on objects at different distances from the eye.
See more about cornea at brainly.com/question/2297282
#SPJ12
B. is it i just got done this in class like two weeks ago hope it helps
Answer:
In a positive ion, the number of protons is larger than the number of electrons.
In a negative ion, the number of protons is smaller than the number of electrons.
Explanation:
Each proton carries a positive charge of one unit.
Each elec in tron carries a negative charge of one unit.
In an atom, there are as many protons as electrons. Hence, they are neutral.
However, in a positive ion, there are less negative charge than positive charge. Hence the net charge is positive. That also means that there are fewer negatively-charged electrons than positively-charged protons.
Similarly, in a negative ion, there are more negative charge than positive charge. Hence the net charge is negative. That also means that there are more negatively-charged electrons than positively-charged protons.