Answer:
The speed of the sound for the adiabatic gas is 313 m/s
Explanation:
For adiabatic state gas, the speed of the sound c is calculated by the following expression:
Where R is the gas's particular constant defined in terms of Cp and Cv:
For particular values given:
The gamma undimensional constant is also expressed as a function of Cv and Cp:
And the variable T is the temperature in Kelvin. Thus for the known temperature:
The Jules unit can expressing by:
Replacing the new units for the speed of the sound:

Answer:
ummm why is you doing this
Explanation:
It doesnt make sense.
Answer:
98°C
Explanation:
Total surface area of cylindrical fin = πr² + 2πrl , r = 0.015m; l= 0.1m; π =22/7
22/7*(0.015)² + 22/7*0.015*0.1 = 7.07 X 10∧-4 + 47.1 X 10∧-4 = (54.17 X 10∧-4)m²
Temperature change, t = (50 - 25)°C = 25°C = 298K
Hence, Temperature = 150 X (54.17 X 10∧-4) X 298/123 = 242.14/124 = 2.00K =
∴ Temperature change = 2.00K
But temperature, T= (373 - 2)K = 371 K
In °C = (371 - 273)K = 98°C
Answer:
To help wheels move in a circle
Explanation: