Answer:
See explaination
Explanation:
int RED=10; int BLUE=11; int GREEN=12; int BUTTON1=8; int BUTTON2=9; void setup() { pinMode(RED, OUTPUT); pinMode(BLUE, OUTPUT); pinMode(GREEN, OUTPUT); pinMode(BUTTON1, INPUT); pinMode(BUTTON2, OUTPUT); } void loop() { int BTN1_STATE=digitalRead(BUTTON1); int BTN2_STATE=digitalRead(BUTTON2); if(BTN1_STATE==HIGH) { digitalWrite(BLUE, HIGH); delay(1000); // Wait for 1 second digitalWrite(BLUE, LOW); } if(BTN2_STATE==HIGH) { digitalWrite(RED, HIGH); delay(4000); // Wait for 4 seconds digitalWrite(RED, LOW); } if(BTN1_STATE==HIGH && BTN2_STATE==HIGH) { digitalWrite(GREEN, HIGH); delay(2000); // Wait for 2 second digitalWrite(GREEN, LOW); } }
Answer:
The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.
Explanation:
Given that,
Thickness of A = 8.0 m
Conductivity = 25.0 m/d
Thickness of B = 2.0 m
Conductivity = 142 m/d
Thickness of C = 34 m
Conductivity = 40 m/d
We need to calculate the horizontal conductivity
Using formula of horizontal conductivity

Put the value into the formula


We need to calculate the vertical conductivity
Using formula of vertical conductivity

Put the value into the formula


Hence, The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.
Answer:
hello your question lacks the required image attached to this answer is the image required
answer : NOR1(q_) wave is complementary to NOR2(q)
Explanation:
Note ; NOR 2 will be addressed as q in the course of this solution while NOR 1 will be addressed as q_
Initial state is unknown i.e q = 0 and q_= 1
from the diagram the waveform reset and set
= from 0ns to 20ns reset=1 and set=0.from the truth table considering this given condition q=0 and q_bar=1 while
from 30ns to 50ns reset=0 and set=1.from the truth table considering this condition q=1 and q_bar=1.so from 35ns also note there is a delay of 5 ns for the NOR gate hence the NOR 2 will be higher ( 1 )
From 50ns to 65ns both set and reset is 0.so NOR2(q)=0.
From 65 to 75 set=1 and reset=0,so our NOR 2(q)=1 checking from the truth table
also from 75 to 90 set=1 and reset=1 , NOR2(q) is undefined "?" and is mentioned up to 95ns.
since q_ is a complement of q, then NOR1(q_) wave is complementary to NOR2(q)
Answer:
The correct answer is option 'B': Load is far from fulcrum and the effort is applied near the fulcrum
Explanation:
A lever works on the principle of balancing of torques. The torque about the fulcrum by the load should be equal to the torque by the applied effort. Since we know that the torque is proportional to both the force and the distance it is applied from the distance from the axis of rotation. A lever is used when we need to lift a heavy load by utilizing this effect of the lever arm.
A mechanical disadvantage occurs when we are not able to lift the weight easily due to the fact we apply effort near the fulcrum.
Answer:
See explaination and attachment.
Explanation:
Navier-Stokes equation is to momentum what the continuity equation is to conservation of mass. It simply enforces F=ma in an Eulerian frame.
The starting point of the Navier-Stokes equations is the equilibrium equation.
The first key step is to partition the stress in the equations into hydrostatic (pressure) and deviatoric constituents.
The second step is to relate the deviatoric stress to viscosity in the fluid.
The final step is to impose any special cases of interest, usually incompressibility.
Please kindly check attachment for step by step solution.