Answer:
The source code files for this question have been attached to this response.
Please download it and go through each of the class files.
The codes contain explanatory comments explaining important segments of the codes, kindly go through these comments.
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
java
</span>
Using the knowledge of computational language in python it is possible to write a code that writes a list and defines the arrange.
<h3>Writing code in python:</h3>
<em>def isSorted(lyst):</em>
<em>if len(lyst) >= 0 and len(lyst) < 2:</em>
<em>return True</em>
<em>else:</em>
<em>for i in range(len(lyst)-1):</em>
<em>if lyst[i] > lyst[i+1]:</em>
<em>return False</em>
<em>return True</em>
<em>def main():</em>
<em>lyst = []</em>
<em>print(isSorted(lyst))</em>
<em>lyst = [1]</em>
<em>print(isSorted(lyst))</em>
<em>lyst = list(range(10))</em>
<em>print(isSorted(lyst))</em>
<em>lyst[9] = 3</em>
<em>print(isSorted(lyst))</em>
<em>main()</em>
See more about python at brainly.com/question/18502436
#SPJ1
Answer:
nmuda mudaf A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer:
0.2 kcal/mol is the value of
for this reaction.
Explanation:
The formula used for is:


where,
= Gibbs free energy for the reaction
= standard Gibbs free energy
R =Universal gas constant
T = temperature
Q = reaction quotient
k = Equilibrium constant
We have :
Reaction quotient of the reaction = Q = 46
Equilibrium constant of reaction = K = 35
Temperature of reaction = T = 25°C = 25 + 273 K = 298 K
R = 1.987 cal/K mol

![=-1.987 cal/K mol\times 298 K\ln [35]+1.987 cal/K mol\times 298K\times \ln [46]](https://tex.z-dn.net/?f=%3D-1.987%20cal%2FK%20mol%5Ctimes%20298%20K%5Cln%20%5B35%5D%2B1.987%20cal%2FK%20mol%5Ctimes%20298K%5Ctimes%20%5Cln%20%5B46%5D)

1 cal = 0.001 kcal
0.2 kcal/mol is the value of
for this reaction.