Answer:
a
Step-by-step explanation:
Answer: The answer is ∠TUV.
Step-by-step explanation: Given in the question a quadrilateral SVUT with ∠SVU = 112°. We need to determine the angle whose measure will decide whether or not the quadrilateral SVUT is a trapezoid.
We know that for a quadrilateral to be a trapezoid, we need only one condition that one pair of opposite sides must be parallel.
So, in quadrilateral SVUT, since the measure of ∠SVU is given, so we can decide it is a trapezoid or not if we know the measure of ∠TUV. As ST and UV cannot be parallel, so its meaningless to determine ∠TSV.
For SV and TU to be parallel to each other, we need
∠SVU + ∠TUV = 180° (sum of interior alternate angles).
Therefore,
∠TUV = 180° - 112° = 68°.
Thus, we need to determine ∠TUV and its measure shoul be 68°.
Option B: The area of the trapezoid is 157.5 m²
Explanation:
We need to determine the area of the trapezoid.
The area of the trapezoid can be determined by the formula,

where h is the height, a and b are the base of the trapezoid.
From the figure, it is obvious that
,
and 
Substituting these values in the formula, we have,

Simplifying the terms, we have,

Multiplying the terms in the numerator, we have,

Dividing, we get,

Thus, the area of the trapezoid is 157.5 m²
Hence, Option B is the correct answer.
Answer:
I think so.
Step-by-step explanation:
If you do the math 2(5-3) exponent 2 - 4 = 4
So if y is 4 you should be correct!
Thb I think you need to know the value of y to solve this question.