Answer: It is true that Your friend should release the
first.
Explanation:
The velocity of particles of a gas is inversely proportional to the mass of gas. This means that more is the mass of gas less will be its velocity.
Or, more will be the mass of gas more slowly it will move from one place to another.
The molar mass of chlorine gas is more than the molar mass of hydrogen gas. Therefore, chlorine gas will move slowly.
So, your friend should release the
gas first and then according to the length of room you should release the
gas.
Thus, we can conclude that it is true that Your friend should release the
first.
I would maybe say solid at higher temps
Answer: 1.14
Explanation:

To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

To calculate pH of gastric juice:
molarity of
= 0.072
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)

Thus the pH of the gastric juice is 1.14
Answer:
See below
Explanation:
.045 liter / 22.4 l / mole * 6.022 x 10^23 molecules/mole * 2 atoms/molecule =
( * 2 becuase nitrogen gas is diatomic)
So I’m not 100% sure what you’re asking but I’m going to give it a go. The elimination reaction is a term used in organic chemistry that describes a type of reactions. The name kinda tells you what’s going to happen. Something is going to be removed/eliminated from initial reactant/substrate and as a result, an alkene (double bond containing compound) will form.
In elimination reactions a hydrogen atom is first removed (as a H+) from the beta carbon. As a result, the left behind electrons create a pi bond between the beta carbon and the neighboring alpha carbon. This promotes the electronegative atom, on the alpha carbon, to leaves the substrate taking both electrons from the shared sigma bond with the alpha carbon.