The answer for this one is a
Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
A patient receiving an X-ray in a hospital
Answer: I believe it is critical mass
Explanation:
The structure of the alkyl bromides used in a malonic ester synthesis of ethyl 2-methyl-4-pentenoate.
Ethyl 2-methyl-4-pentenoate by Malonic ester synthesis.
The alkylation of diethyl malonate or a related ester of malonic acid at the carbon alpha (immediately next) to both carbonyl groups, followed by conversion to a substituted acetic acid, characterizes the chemical reaction known as the malonic ester synthesis.
As a result, it is evident from the structure of ethyl 2-methyl-4-pentenoate that ethyl and methyl bromides are the alkyl bromides employed.
To learn more about Malonic ester synthesis refer here:
brainly.com/question/17237043
#SPJ4