J. J. Thomson, who discovered the electron in 1897, proposed the plum pudding model of the atom in 1904 before the discovery of the atomic nucleus in order to include the electron in the atomic model. In Thomson's model, the atom is composed of electrons (which Thomson still called “corpuscles,” though G. J.
Answer:
It is A).
Explanation:
Silver (Ag) goes from the pure metal to Ag+ losing 1 electron so it is oxidised.
The hydrogen ion gains electrons and is reduced.
Answer:
They experience the same pressure
Explanation:
To answer this question, we recall Pascal's, Law Pascal's law states that an increase in pressure at a point in a confined cylinder containing a fluid, there is also an equal increase at all other points in that cylinder.
According to Pascal's law the pressure if the pressure expereienced by the larger diameter piston increases, the pressure experienced by the smaller diameter piston also increases by the same amount
However considering that pressure = Force/area F1/A1 =F2/A2
thus where A1 = πD²÷4 and A2 = πD²÷ 16 we have
we have F1×4/πD² = F2×16/πD² or F1 = 4× F2
They experience the same pressure but the larger cylinder delivers four times the force transmitted from he outside to the smaller cylinder
Answer:
38.3958 °C
Explanation:
As,
1 gram of carbohydrates on burning gives 4 kilocalories of energy
1 gram of protein on burning gives 4 kilocalories of energy
1 gram of fat on burning gives 9 kilocalories of energy
Thus,
27 g of fat on burning gives 9*27 = 243 kilocalories of energy
20 g of protein on burning gives 4*20 = 80 kilocalories of energy
48 gram of carbohydrates on burning gives 4*48 = 192 kilocalories of energy
Total energy = 515 kilocalories
Using,

Given: Volume of water = 23 L = 23×10⁻³ m³
Density of water= 1000 kg/m³
So, mass of the water:
Mass of water = 23 kg
Initial temperature = 16°C
Specific heat of water = 0.9998 kcal/kg°C

Solving for final temperature as:
<u>Final temperature = 38.3958 °C </u>