Explanation:
Apple cider vinegar or balsamic vinegar might contain various synthetics which might interact with or nullified the findings, whereas white vinegar comprises of acidic acid only. In fact, apple cider vinegar and balsamic vinegar are deep in appearance this would make it very difficult to determine the color. This is why it is preferable to use white vinegar in the Titration process.
Degrees true hours false seconds false
Answer:
Consumers must consume other organisms to get the food that they need and are known as Heterotrophs as they cannot make their own glucose. These consumers eat producers (plants). Herbivores are considered as first order consumers. These consumers eat consumers and producers (animals and plants).
To determine the volume of both concentration of vinegar, we need to set up two equations since we have two unknowns.
For the first equation, we do a mass balance:
mass of 100% vinegar + mass of 13% vinegar = mass of 42% vinegar
Assuming they have the same densities, then we can write this equation in terms of volume.
V(100%) + V(13%) = V(42%)
we let x = V(100%)
y = V(13%)
x + y = 150
For the second equation, we do a component balance:
1.00x + .13y = 150(.42)
x + .13y = 63
The two equations are
x + y = 150
x + .13y = 63
Solving for x and y,
x = 50
y = 100
Therefore, you need to mix 50 mL of the 100% vinegar and 100 mL of the 13% vinegar.
Answer:
[NaCH₃COO] = 2.26M
Explanation:
17% by mass is a sort of concentration. Gives the information about grams of solute in 100 g of solution. (In this case, 17 g of NaCH₃COO)
Let's determine the volume of solution, by density
Mass of solution / Volume of solution = Solution density
100 g / Volume of solution = 1.09 g/mL
100 g / 1.09 g/mL = 91.7 mL
17 grams of solute is contained in 91.7 mL
Molarity (M) = Mol of solute /L of solution
91.7 mL / 1000 = 0.0917L
17 g / 82 g/m = 0.207 moles
Molariy = 0.207 moles / 0.0917L → 2.26M