To answer this question, first we take note that the maximum height that can be reached by an object thrown straight up at a certain speed is calculated through the equation,
Hmax = v²sin²θ/2g
where v is the velocity, θ is the angle (in this case, 90°) and g is the gravitational constant. Since all are known except for v, we can then solve for v whichi s the initial velocity of the projectile.
Once we have the value of v, we multiply this by the total time traveled by the projectile to solve for the value of the range (that is the total horizontal distance).
To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.
The tension in the vertical plane will be equivalent to the centripetal force therefore

Here,
m = mass
v = Velocity
r = Radius
The tension in the horizontal plane will be subject to the action of the weight, therefore

Matching both expressions with respect to the tension we will have to


Then we have that,


Rearranging to find the velocity we have that

The value of the angle is 14.5°, the acceleration (g) is 9.8m/s^2 and the radius is



Replacing we have that


Therefore the speed of each seat is 4.492m/s
Answer:
6.8 m/s2
Explanation:
Let g = 9.8 m/s2. The total weight of both the rope and the mouse-robot is
W = Mg + mg = 1*9.8 + 2*9.8 = 29.4 N
For the rope to fails, the robot must act a force on the rope with an additional magnitude of 43 - 29.4 = 13.6 N. This force is generated by the robot itself when it's pulling itself up at an acceleration of
a = F/m = 13.6 / 2 = 6.8 m/s2
So the minimum magnitude of the acceleration would be 6.8 m/s2 for the rope to fail
Answer:
y = 52.44 10⁻⁶ m
Explanation:
It is Rayleigh's principle that two points are resolved if the maximum of the diffraction pattern of one matches the minimum the diffraction pattern of the other
Based on this principle we must find the angle of the first minimum of the diffraction expression
a sin θ= m λ
The first minimum occurs for m = 1
sin θ = λ / a
Now let's use trigonometry the object is a distance L = 0.205 m
tan θ = y / L
Since the angles are very small, let's approximate
tan θ = sin θ/cos θ = sin θ
sin θ = y / L
We substitute in the diffraction equation
y / L = λ / a
y = λ L / a
Let's calculate
y = 550 10⁻⁹ 0.205 / 2.15 10⁻³
y = 52.44 10⁻⁶ m
Answer: 
Explanation:
We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity
of the planet P1 with a period
:
(1)
Where:
is the velocity of planet P1
is the radius of the orbit of planet P1
Finding
:
(2)
(3)
(4)
On the other hand, we know the gravitational force
between the star S with mass
and the planet P1 with mass
is:
(5)
Where
is the Gravitational Constant and its value is 
In addition, the centripetal force
exerted on the planet is:
(6)
Assuming this system is in equilibrium:
(7)
Substituting (5) and (6) in (7):
(8)
Finding
:
(9)
(10)
Finally:
(11) This is the mass of the star S