At the highest point of the trajectory the vertical component will have its zero velocity, and the descent caused by the force of gravity will begin.
Since the ball is thrown with a certain speed, the vertical component reaches its highest point (upwards), until returning to the receiver who will receive the ball with the same vertical component but in the opposite direction (downwards).
Therefore the vertical component will have its highest value at launch.
Answer:
a)
, b)
, c)
, d) Six polar bears.
Explanation:
a) The slab of ice is modelled by the Archimedes' Principles and the Newton's Laws, whose equation of equilibrium is:

The height of the ice submerged is:




The percentage of the volume of the ice that is submerged is:


b) The height of the portion of the ice that is submerged is:

c) The buoyant force acting on the ice is:


d) The new system is modelled after the Archimedes' Principle and Newton's Laws:

The number of polar bear is cleared in the equation:




The maximum number of polar bears that slab could support is 6.
Therefore the world's record high temperature of 134.0°F (56.7°C) is held by Furnace Creek Ranch in Death Valley, California. That global high temperature was attained on July 10, 1913.
Answer:
the shortest distance to the obstruction is 0.431 m
Explanation:
We can see this system as an air column, where the plumber is open and where the water is closed, in the case when he hears the sound there is a phenomenon of resonance and superposition of waves with constructive interference.
For the lowest resonance we must have a node where the water is and a maximum where the plumber is a quarter of the wavelength
λ = ¼ L
If we are in a major resonance specifically the following resonance. We have a full wavelength plus a quarter of the wavelength
λ = 4L / 3
The general formula is
λ = 4L / n n = 1, 3, 5, 7,…
In addition the wave speed is the product of the frequency by the wavelength
v = λ f
Let's replace
v = (4L / n) f
L = v n / (4 f)
Now we can calculate the depth or length of the air column
If we have the first standing wave n = 1
L = 340 1 / (4 197)
L = 0.431 m
If it is the second resonance n = 3
L = 340 3 / (4 197)
L = 1.29 m
We can see the shortest distance to the obstruction is 0.431 m
The kinematics of the uniform motion allows us to find the final position vector
r = (-41.575 i + 42.253 j) m
Given parameters
- the starting position x = -17.5 m y = 23.1 m
- jump time t = 10.7 s
- The average velocities vₓ = -2.25 m / s and v_y = 1.79 m / s
to find
The uniform motion occurs when the velocity of the bodies is constant, in this case the relationship can be used for each axis
v =
x = x₀ + v t
Where vₓ it is the velocity, x the displacement, x₀ the initial position and t the time
Let's set a reference system with the horizontal x-axis. Regarding which we carry out the measurements
X axis
we look for the final position
x = x₀ + vₓ t
x = -17.5 -2.25 10.7
x = -41.575 m
Y Axis
we look for the final position
y = y₀ + v_y t
y = 23.1 + 1.79 10.7
y = 42.253 m
In conclusion, using the kinematics of uniform motion, find the final position vector
r = (-41.575 i + 42.253 j) m
learn more about uniform motion here:
brainly.com/question/17036013