The smallest difference in voltage that can be resolved is referred to as the resolution. The resolution can be calculated with the following formula:
resolution=voltage range / digital range
The voltage range in our case is from -500mV to 500mV, which gives 1000mV.
The digital range on the other hand is 2^(number of bits).
It depends on what type of bit board we are using. If the ADC we are using is a 16 bit board, then 2^16=<span>65536.
So, the resolution is:
resolution=1000mV/</span><span>65536=0.015 mV</span>
Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m
Answer:
138,516,546.9 horas.
Explanation:
Tenemos que usar la ecuación:
Velocidad = distancia/tiempo
Acá tenemos:
Velocidad = 0.3m/s
distancia = 149597870700 m
y queremos resolver la ecuación para el tiempo:
0.3m/s = 149597870700m/tiempo.
tiempo = 149597870700m/(0.3m/s) = 498,659,569,000 s
y sabemos que una hora tiene 3600 segundos, entonces si queremos transformar de segundos a horas tenemos:
498,659,569,000 s = (498,659,569,000/3600) h = 138,516,546.9 horas.
Answer:
change the
Explanation:
P = W/time
W = F*d
You have control over how fast you go up the stairs.
You also have control over how far up the stairs you go.
Therefore the answer is
If you don't like distance as an answer, you can carry something up the stairs -- anything that increases F will do.