Answer: 
Explanation:
given data:
metre moving current = 
meters voltage = 
or 
<u><em>Solution:</em></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>
<u><em /></u>







the unknown voltage is 316.8V
Answer:
Electric field on proton

Explanation:
Given that

We know that
Charge on proton

We know that
Force = Electric field x Charge
F= E x q



Electric field on proton

Hi there!
Great question!
Basketballs have air inside them. A special pump is used to insert the air. That's why you can lift the basketballs off the ground easily. If it was a solid, though, you'd hardly be able to lift the ball up! Basketballs can float, too, because anything with air inside can float. If it were solid, it would sink in the water easily.
Hope this helps! :D
Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
Answer:
5.740 m
Explanation:
PE = mgh
900.0 J = (16.00 kg) (9.8 m/s²) h
h = 5.740 m