1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
11

You put a new battery into your MP3 player and listen to a song. What are the energy transformations taking place in this system

?

Physics
1 answer:
otez555 [7]3 years ago
5 0

Answer:

B. Chemical energy to electric energy to kinetic energy to sound energy

Explanation:

A battery is a device that converts chemical energy, stored in the chemical substance contained inside the battery, into electric energy, by pushing electrons along the circuit at which the battery is connected.

In an MP3 player, this electron (which form an electric current) pass through a sound transducer, which is a device that converts the electric energy of the current into kinetic energy, by producing the vibrations of the loudspeaker (or of the headphones).

As a result, the air surrounding the loudspeakers/headphones start to vibrate, producing sound waves, and the sound that we hear: in this last stage, therefore, kinetic energy has been converted into sound energy.

You might be interested in
What best describes desert pavements
Gekata [30.6K]

Answer:

Explanation:

A common theory suggests that desert pavements are formed through gradual removal of sand and other fine particles by the wind and intermittent rains leaving behind the large fragments. The larger rock particles are shaken into place by actions of different agents such as rain, wind, gravity, and animals

3 0
4 years ago
How fast is a wave traveling if it has a wavelength of 7 meters and a frequency of 11 Hz?
pashok25 [27]

Answer:

\huge{ \boxed{ \bold{ \sf{77 \: m/s}}}}

☯ Question :

  • How fast is a wave travelling if it has a wavelength of 7 meters and a frequency of 11 Hz?

☯ \underbrace{ \sf{Required \: Answer  :  }}

☥ Given :

  • Wavelength ( λ ) = 7 meters
  • Frequency ( f ) = 11 Hz

☥ To find :

  • Speed of sound ( v ) = ?

☄ We know ,

\boxed{ \sf{v = f \times λ}}

where ,

  • v = speed of sound
  • f = frequency
  • λ = wavelength

Now, substitute the values and solve for v.

➺ \sf{v = 11 \times 7}

➺ \boxed{ \sf{v = 77 \: m/s}}

-------------------------------------------------------------------

✑ Additional Info :

  • Frequency : The number of complete vibrations made by a particle of a body in one second is called it's frequency. It is denoted by the letter f . The SI unit of frequency is hertz ( Hz ).

  • Wavelength : The distance between two consecutive compressions or rarefactions of a sound wave is called wavelength of that wave. It is denoted by λ ( lambda ) and it's SI unit is m.

  • Speed of a sound wave : The distance covered by a sound wave in one second is called speed of sound wave. It depends on the product of wavelength and frequency of the wave.

Hope I helped!

Have a wonderful time! ツ

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

7 0
3 years ago
(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Sup
KengaRu [80]

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx

Where

x_{o}, x_{f} - Initial and final position, respectively, measured in meters.

F(x) - Force as a function of position, measured in newtons.

Given that F = k\cdot x and the fact that F = 25\,N when x = 0.3\,m - 0.2\,m, the spring constant (k), measured in newtons per meter, is:

k = \frac{F}{x}

k = \frac{25\,N}{0.3\,m-0.2\,m}

k = 250\,\frac{N}{m}

Now, the work function is obtained:

W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx

W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]

W = 0.313\,J

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be r(\theta) = 2\cdot \sin 5\theta. The area of the region enclosed by one loop of the curve is given by the following integral:

A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta

A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta

By using trigonometrical identities, the integral is further simplified:

A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta

A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta

A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta

A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)

A = 4\pi

The area of the region enclosed by one loop of the curve r(\theta) = 2\cdot \sin 5\theta is 4\pi.

5 0
3 years ago
Explain why does the bowling ball decelerate as it travels along the lane
frutty [35]

The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.

5 0
3 years ago
Estimate the final temperature of a mole of gas at 200.0 atm and 19.0°C as it is forced through a porous plug to a final pressur
Yanka [14]

Answer : The final temperature of gas is 266.12 K

Explanation :

According to the Joule-Thomson experiment, it states that when a gas is expanded adiabatically from higher pressure region to lower pressure region, the change in temperature with respect to change in pressure at constant enthalpy is known as Joule-Thomson coefficient.

The formula will be:

\mu_{J,T}=(\frac{dT}{dP})_H

or,

\mu_{J,T}=(\frac{dT}{dP})_H\approx \frac{\Delta T}{\Delta P}

As per question the formula will be:

\mu_{J,T}=\frac{T_2-T_1}{P_2-P_1}   .........(1)

where,

\mu_{J,T} = Joule-Thomson coefficient of the gas = 0.13K/atm

T_1 = initial temperature = 19.0^oC=273+19.0=292.0K

T_2 = final temperature = ?

P_1 = initial pressure = 200.0 atm

P_2 = final pressure = 0.95 atm

Now put all the given values in the above equation 1, we get:

0.13K/atm=\frac{T_2-292.0K}{(0.95-200.0)atm}

T_2=266.12K

Therefore, the final temperature of gas is 266.12 K

5 0
3 years ago
Other questions:
  • Which weather event is capable of destroying homes and uprooting trees due to a low pressure area at its center
    15·2 answers
  • A hydrogen fuel cell supplies power for a small motor. the fuel cell delivers a current of 0.5 a and a voltage of 0.43 v. what i
    15·1 answer
  • A projectile is fired with an initial speed of 100 m/s and angle of elevation 30 degrees. The projectile eventually hits the gro
    9·1 answer
  • Whats number 4 ?????????
    8·1 answer
  • A net force of 15 N is exerted on an encyclopedia to cause it to accelerate at a rate of 5m/s/s. Determine the mass of the encyc
    15·1 answer
  • Consider a vibrating system described by the initial value problem. (A computer algebra system is recommended.) u'' + 1 4 u' + 2
    5·1 answer
  • Where do trees really come from and this is my little sister asking it not me
    14·2 answers
  • Help me please I will thank you​
    6·1 answer
  • Balance the equation<br>H3PO4 + NaOH --&gt;Na3PO4 + H2O​
    7·1 answer
  • Visible light waves do not diffract as well as radio waves because
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!