Answer:
Mass, m = 26.54kg
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
- Fapp is the applied force
- Fg is the force due to gravitation
<u>Given the following data;</u>
Net force, Fnet = 345
Acceleration, a = 3.2m/s²
<u>To find mass;</u>
Fnet = Fapp + Fg
Fnet = ma + mg
Fnet = m(a+g)
m = Fnet/(a+g)
We know that acceleration due to gravity, g = 9.8m/s²
Substituting into the equation, we have;
m = 345/(3.2 + 9.8)
m = 345/13
Mass, m = 26.54kg
Answer:
Explanation:
Yes , their displacement may be equal .
Suppose the displacement is AB where A is starting point and B is end point .
The car is covering the distance AB by going from A to B on straight line . On the other hand plane goes from A to C , then from C to D and then from D to B . In this way plane reaches B from A on a different path which is longer than path of the car . In the second case also displacement of plane is AB . In the second case distance covered is longer but displacement is same that is AB .
None of the choices is an appropriate response.
There's no such thing as the temperature of a molecule. Temperature and
pressure are both outside-world manifestations of the energy the molecules
have. But on the molecular level, what it is is the kinetic energy with which
they're all scurrying around.
When the fuel/air mixture is compressed during the compression stroke,
the temperature is raised to the flash point of the mixture. The work done
during the compression pumps energy into the molecules, their kinetic
energy increases, and they begin scurrying around fast enough so that
when they collide, they're able to stick together, form a new molecule,
and release some of their kinetic energy in the form of heat.
Answer:
10250 N/C leftwards
Explanation:
QA = 4 micro Coulomb
QB = - 5 micro Coulomb
AP = 6 m
BP = 2 m
A is origin, B is at 4 m and P is at 6 m .
The electric field due to charge QA at P is EA rightwards

The electric field due to charge QB at P is EB leftwards

The resultant electric field at P due the charges is given by
E = EB - EA
E = 11250 - 1000 = 10250 N/C leftwards