1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dlinn [17]
2 years ago
13

Plssssssssssssssssssssssssssssss

Mathematics
2 answers:
user100 [1]2 years ago
7 0

Answer:

Correct answer is 4/7:10

coldgirl [10]2 years ago
5 0

Answer:

the last one 7/4 _10

Step-by-step explanation:

You might be interested in
Which one do I put? Pick out of the 3 options.
SpyIntel [72]
The answer is -6 is less than 3
3 0
3 years ago
Find the coordinates of point P
Drupady [299]
Here is the formula for finding a partitioning point:
x=x1+k(x2-x1), y=y1+k(y2-y1)
k is the ratio of the segment from the beginning point to the partitioning : the whole segment. In this case, k=AP:AB=5/16
so x=1+(5/16)*(-2-1)=1/16
y=6+(5/16)(-3-6)=51/16
so the answer is (-1/16, 51/16)

Please double check my calculation by yourself.

refer to this website for the formula and how to find k:

"This ratio is called k, and is determined by writing the numerator over the sum of the numerator and the denominator of the original ratio."
https://cobbk12.blackboard.com/bbcswebdav/institution/eHigh%20School/Courses/CCVA%20CCGPS%20Coordina....
6 0
3 years ago
5(8n+ 7) < 5-5(n+3)
svet-max [94.6K]

Answer:

n<-1

Step-by-step explanation:

Distribute 5 and -5 into each parenthesis respectively: 40n+35<5-5n-15

Combine like terms: 40n+35<-5n-10

Add 5n to both sides: 45n+35<-10

Subtract 35 from both sides: 45n<-45

Divide both sides by 45: n<-1

3 0
2 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Did Tyson use the order of operations to correctly evaluate the expression? *
nlexa [21]

Answer:

Yes

Step-by-step explanation:

Just trust

6 0
3 years ago
Read 2 more answers
Other questions:
  • 542 using base ten blocks
    9·2 answers
  • Evaluate the function f(x)=2x-2 when x equals negative 1<br> A. -4<br> B. -3<br> C. 0<br> D. 4
    15·1 answer
  • 11. Higher Order Thinking Cora makes this
    15·1 answer
  • Please help, due today​
    5·2 answers
  • HELP I WILL GIVE BRAINIEST IS TO WHOEVER Is the fastest:
    11·2 answers
  • Explain why the figure is a parallelogram…. Please I need help ASAP.
    9·1 answer
  • Find n.<br> 12/18 = n/36<br><br> n =
    7·2 answers
  • Help please! I will give brainliest to the best answer
    12·1 answer
  • Please help i will give brainliest :) question is in picture
    9·2 answers
  • PLEASE HELP IMAGE BELOW
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!