The other form of circle equation is (x-a)2 + (y-b)2 = r2. a and b is the coordinate of the center and r is radius. So the equation is x2+(y-4)2=9. Change it to the general form is x2+y2-8y+7=0. So A=1, B=1, C=0, D=-8 and E=7.
Answer:
2
Step-by-step explanation:all of them can be divided by 2 and it is the smallest number.
The correct answer is: [B]: " (2, 5) ".
__________________________________________
Given:
__________________________________________
-5x + y = -5 ;
-4x + 2y = 2 .
___________________________________________
Consider the first equation:
___________________________
-5x + y = -5 ; ↔ y + (-5x) = -5 ;
↔ y - 5x = -5 ; Add "5x" to each side of the equation; to isolate "y" on one side of the equation; and to solve in terms of "y".
_____________________________________________
y - 5x + 5x = -5 + 5x
y = -5 + 5x ; ↔ y = 5x - 5 ;
____________________________________________
Now, take our second equation:
______________________________
-4x + 2y = 2 ; and plug in "(5x - 5)" for "y" ; and solve for "x" :
_____________________________________________________
-4x + 2(5x - 5) = 2 ;
______________________________________________________
Note, 2(5x - 5) = 2(5x) - 2(5) = 10x - 10 ;
__________________________________________
So: -4x + 10x - 10 = 2 ;
On the left-hand side of the equation, combine the "like terms" ;
-4x +10x = 6x ; and rewrite:
6x - 10 = 2 ;
Now, add "10" to each side of the equation:
6x - 10 + 10 = 2 + 10 ;
to get:
6x = 12 ; Now, divide EACH side of the equation by "6" ; to isolate "x" on one side of the equation; and to solve for "x" ;
6x/6 = 12 / 6 ;
x = 2 ;
_________________________________
Now, take our first given equation; and plug our solved value for "x" ; which is "2" ; and solve for "y" ;
_____________________________________
-5x + y = -5 ;
-5(2) + y = -5 ;
-10 + y = -5 ; ↔
y - 10 = -5 ;
Add "10" to each side of the equation; to isolate "y" on one side of the equation; and to solve for "y" ;
y - 10 + 10 = -5 + 10 ;
y = 5 .
_____________________________
So, we have, x = 2 ; and y = 5 .
____________________________
Now, let us check our work by plugging in "2" for "x" and "5" for "y" in BOTH the original first and second equations:
______________________________
first equation:
-5x + y = -5 ;
-5(2) + 5 =? -5?
-10 + 5 =? -5 ? YES!
______________________
second equation:
-4x + 2y = 2 ;
-4(2) + 2(5) =? 2 ?
-8 + 10 =? 2 ? Yes!
_______________________________________________________
So, the answer is:
___________________________________________________________
x = 2 , y = 5 ; or, "(2, 5)" ; which is: "Answer choice: [B] " .
___________________________________________________________
You count how many places the number is away from 0. try writing it out in an equation it would help
Answer:
30 ways
Step-by-step explanation:
Given the following information:
- 3 different sandwiches
- 2 different salads
- 5 different drinks
Let assume that the combo contains: 1 sandwich, 1 salad, and 1 drink
Hence, we have:
- The total possible ways of choosing sandwiches she can choose is: 3
- The total possible ways of choosing salads she can choose is: 2
- The total possible ways of choosing drinks she can choose is: 5
=> Total ways = 3*5*2 = 30 ways or there are 30 different combos Keisha can choose
Hope it will find you well.