1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
3 years ago
15

Four identical capacitors are connected with a resistor in two different ways. When they are connected as in part a of the drawi

ng, the time constant to charge up this circuit is 1.48 s. What is the time constant when they are connected with the same resistor, as in part b
Physics
1 answer:
Nina [5.8K]3 years ago
8 0

Answer:

T_2 = 0.592

Explanation:

Given

T_1 = 1.48s

See attachment for connection

Required

Determine the time constant in (b)

First, we calculate the total capacitance (C1) in (a):

The upper two connections are connected serially:

So, we have:

\frac{1}{C_{up}} = \frac{1}{C} + \frac{1}{C}

Take LCM

\frac{1}{C_{up}} = \frac{1+1}{C}

\frac{1}{C_{up}}= \frac{2}{C}

Cross Multiply

C_{up} * 2 = C * 1

C_{up} * 2 = C

Make C_{up} the subject

C_{up} = \frac{1}{2}C

The bottom two are also connected serially.

In other words, the upper and the bottom have the same capacitance.

So, the total (C) is:

C_1 = 2 * C_{up}

C_1 = 2 * \frac{1}{2}C

C_1 = C

The total capacitance in (b) is calculated as:

First, we calculate the parallel capacitance (Cp) is:

C_p = C+C

C_p = 2C

So, the total capacitance (C2) is:

\frac{1}{C_2} = \frac{1}{C_p} + \frac{1}{C} + \frac{1}{C}

\frac{1}{C_2} = \frac{1}{2C} + \frac{1}{C} + \frac{1}{C}

Take LCM

\frac{1}{C_2} = \frac{1 + 2 + 2}{2C}

\frac{1}{C_2} = \frac{5}{2C}

Inverse both sides

C_2 = \frac{2}{5}C

Both (a) and (b) have the same resistance.

So:

We have:

Time constant is directional proportional to capacitance:

So:

T\ \alpha\ C

Convert to equation

T\ =kC

Make k the subject

k = \frac{T}{C}

k = \frac{T_1}{C_1} = \frac{T_2}{C_2}

\frac{T_1}{C_1} = \frac{T_2}{C_2}

Make T2 the subject

T_2 = \frac{T_1 * C_2}{C_1}

Substitute values for T1, C1 and C2

T_2 = \frac{1.48 * \frac{2}{5}C}{C}

T_2 = \frac{1.48 * \frac{2}{5}}{1}

T_2 = \frac{0.592}{1}

T_2 = 0.592

Hence, the time constance of (b) is 0.592 s

You might be interested in
WILL GIVE BRAINLIEST TO THE CORRECT ANSWER
LenKa [72]

Answer:

See the answers below.

Explanation:

We can solve both problems using Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.

∑F =m*a

where:

F = force [N] (units of newtons)

m = mass = 1000 [kg]

a = acceleration = 3 [m/s²]

F = 1000*3\\F=3000[N]

And the weight of any body can be calculated by means of the mass product by gravitational acceleration.

W=m*g\\W=1000*9.81\\W=9810 [N]

4 0
3 years ago
When a physical change in a sample occurs, which of the following would NOT change?
GREYUIT [131]
It's Composition. (C)
3 0
3 years ago
When the magnetic flux through a single loop of wire increases by , an average current of 40 A is induced in the wire. Assuming
Zielflug [23.3K]

COMPLETE QUESTION:

<em>When the magnetic flux through a single loop of wire increases by </em>30 Tm^2<em> , an average current of 40 A is induced in the wire. Assuming that the wire has a resistance of </em><em>2.5 ohms </em><em>, (a) over what period of time did the flux increase? (b) If the current had been only 20 A, how long would the flux increase have taken?</em>

Answer:

(a). The time period is 0.3s.

(b). The time period is 0.6s.

Explanation:

Faraday's law says that for one loop of wire the emf \varepsilon is

(1). \: \: \varepsilon = \dfrac{\Delta \Phi_B}{\Delta t }

and since from Ohm's law

\varepsilon  = IR,

then equation (1) becomes

(2). \: \:IR= \dfrac{\Delta \Phi_B}{\Delta t }.

(a).

We are told that the change in magnetic flux is \Phi_B = 30Tm^2,  the current induced is I = 40A, and the resistance of the wire is R = 2.5\Omega; therefore, equation (2) gives

(40A)(2.5\Omega)= \dfrac{30Tm^2}{\Delta t },

which we solve for \Delta t to get:

\Delta t = \dfrac{30Tm^2}{(40A)(2.5\Omega)},

\boxed{\Delta t = 0.3s},

which is the period of time over which the magnetic flux increased.

(b).

Now, if the current had been I =20A, then equation (2) would give

(20A)(2.5\Omega)= \dfrac{30Tm^2}{\Delta t },

\Delta t = \dfrac{30Tm^2}{(20A)(2.5\Omega)},

\boxed{\Delta t = 0.6 s\\}

which is a longer time interval than what we got in part a, which is understandable because in part a the rate of change of flux \dfrac{\Delta \Phi_B}{\Delta t} is greater than in part b, and therefore , the current in (a) is greater than in (b).

7 0
3 years ago
Acceleration causes a shift of weight to the ______.
marta [7]
Vehicle weight shifts can be backward forward. In this particular case accelerating to fast would cause a shift of weight backwards. Breaking too quickly on the other hand would cause weight to shift forward. You have seen this while in a car or a bus at the traffic light. As the vehicle breaks you are pulled forward as it starts moving you are pulled backwards.  
7 0
3 years ago
Discribe what a conductor does
BabaBlast [244]
A conductor allows electricity to flow through it. 
5 0
3 years ago
Read 2 more answers
Other questions:
  • In the context of the loop and junction rules for electrical circuits, a junction is: Group of answer choices where a wire is be
    13·2 answers
  • A boat travels upstream for 12 miles in 3 hours and returns in 2 hours traveling downstream in a river. What is the rate of the
    9·1 answer
  • A scientist is investigating protons, neutrons, and electrons. Which topic is she studying?
    7·2 answers
  • A cook preparing a meal for a group of people is an example of ______
    12·1 answer
  • Which type of energy comes from the sun and travels to earth ?
    7·2 answers
  • Which of the following best describes philosophy
    13·1 answer
  • Polarized light passes through a polarizer. If the electric vector of the polarized light is horizontal what, in terms of the in
    11·1 answer
  • Which of the following is NOT a developer of an atomic model?
    7·1 answer
  • Which of the following will best transport electrons around an electrical circuit
    8·1 answer
  • A pendulum has a length of 2 m and a 30 kg mass hanging on the end. What is the period of the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!