Answer:
Application of Newton's first law of motion
A body in motion will continue in motion in a straight line unless acted upon by an outside force.
Explanation:
Answer:
t = 4.0 min
Explanation:
given data:
diameter of rod = 2 cm
T_1 = 100 degree celcius
Air stream temperature = 20 degree celcius
heat transfer coefficient = 200 W/m2. K
WE KNOW THAT
copper thermal conductivity = k = 401 W/m °C
copper specific heat Cp = 385 J/kg.°C
density of copper = 8933 kg/m3
charateristic length is given as Lc




Biot number is given as 

Bi = 0.0025
As Bi is greater than 0.1 therefore lumped system analysis is applicable
so we have
............1
where b is given as



b = 0.01163 s^{-1}
putting value in equation 1

solving for t we get
t = 4.0 min
Can you further elaborate this isn't making much sense my mans
The Kinetic energy would be 1/2IL².
<h3>What is
Rotational Kinetic energy ?</h3>
- Rotational energy also known as angular kinetic energy is defined as: The kinetic energy due to the rotation of an object and is part of its total kinetic energy. Rotational kinetic energy is directly proportional to the rotational inertia and the square of the magnitude of the angular velocity.
As we know linear Kinetic energy = 1/2mv²
where m= mass and v= velocity.
Similarly rotational kinetic energy is given by = 1/2IL²
where I- moment of inertia and L=angular momentum.
To know more about the Kinetic energy , visit:
brainly.com/question/29807121
#SPJ4
Answer:
a) 0.658 seconds
b) 0.96 inches
Explanation:

Time taken by the ball to reach the highest point is 0.14 seconds

The highest point reached by the snowball above its release point is 0.315 ft
Total height the snowball will fall is 4+0.315 = 4.315 ft

The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown


The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches