B) would be tha answer :)
The volume of the candle initially is:
V=Ab*h
Area of the base of the cylinder: Ab=pi*r^2
pi=3.14
Radius of the base: r=4 cm
Height of the cylinder: h=6 cm
Ab=pi*r^2
Ab=3.14*(4 cm)^2
Ab=3.14*(16 cm^2)
Ab=50.24 cm^2
V=Ab*h
V=(50.24 cm^2)*(6 cm)
V=301.44 cm^3
The candle melts at a constant rate of:
r=(60 cm^3)/(2 hours)=(120 cm^3)/(4 hours)=(180 cm^3)/(6 hours)
r=30 cm^3/hour
The amount of candle melted off after 7 hours is:
A=(30 cm^3/hour)*(7 hours)
A=210 cm^3
The percent of candle that is melted off after 7 hours is:
P=(A/V)*100%
P=[(210 cm^3)/(301.44 cm^3)]*100%
P=(0.696656051)*100%
P=69.66560510%
Rounded to the nearest percent
P=70%
Answer: 70%
Answer:
B.
Step-by-step explanation:
First, notice that we can cancel out an x in the second term. Thus:

As with the last question, change the sign to multiplication and "flip" the second term:

Multiply straight across:

Cancel the (x+1) term:

Cannot be simplified further.
B.
<u>Answer:</u>
(0.5, -0.5)
<u>Step-by-step explanation:</u>
We are given a line segment on the graph with two known points (ending points) and we are to find its mid point.
We know the formula for the mid point:

Substituting the coordinates of the given points in the above formula:
Mid point =
= (0.5, -0.5)