Answer: The density of chloroform is 1.47 g/mL
Explanation : Given,
Volume = 40.5 mL
Mass of cylinder = 85.16 g
Mass of cylinder and liquid = 145.10 g
First we have to calculate the mass of liquid (chloroform).
Mass of liquid = Mass of cylinder and liquid - Mass of cylinder
Mass of liquid = 145.10 g - 85.6 g
Mass of liquid = 59.5 g
Now we have to calculate the density of liquid (chloroform).
Formula used:

Now putting g all the given values in this formula, we get:


Therefore, the density of chloroform is 1.47 g/mL
Answer:
coooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooool lol
Explanation:
There are 6 atoms of oxygen on the reactant side of the following equation: 2Fe2O3 + 3C → 4Fe + 3CO2. Details about atoms can be found below.
<h3>How to find number of atoms?</h3>
The number of atoms of an element in a balanced equation is the amount of that element involved in the reaction.
According to this question, Iron oxide reacts with carbon to produce iron and carbon dioxide as follows:
2Fe2O3 + 3C → 4Fe + 3CO2
In this reaction, 2 × 3 atoms = 6 atoms of oxygen are present on the reactant side of the equation.
Learn more about number of atoms at: brainly.com/question/8834373
#SPJ1
I believe the correct response would be D. At least 2 of the above statements are correct.
you are right on all the ones you did