m/s^2 is 39.2266
is the answer If thats what you needed
1) The average velocity is 
2) The instantaneous velocity is 
Explanation:
1)
The average velocity of an object is given by

where
d is the displacement
t is the time elapsed
In this problem, the position of the particle is given by the function

where t is the time.
The position of the particle at time t = 6 sec is

While the position at time t = 12 sec is

So, the displacement is

And therefore the average velocity is

2)
The instantaneous velocity of a particle is given by the derivative of the position vector.
The position vector is

By differentiating with respect to t, we find the velocity vector:

Therefore, the instantaaneous velocity at any time t can be found by substituting the value of t in this expression.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
I can not solve the problem if I do not have the mass.
<span>So we want to know what happens to the momentum of the ball that rolls down hill and hits a box. So we need to use the law of conservation of momentum which states that the momentum must be conserved. It cant be transformed into inertia or mass. It can only be transferred to other object via some interactions like collisions. So it has to be a. transferred to the box and that is the correct answer. </span>
Answer:
Option C is the correct answer.
Explanation:
Considering vertical motion of ball:-
Initial velocity, u = 2 m/s
Acceleration , a = 9.81 m/s²
Displacement, s = 40 m
We have equation of motion s= ut + 0.5 at²
Substituting
s= ut + 0.5 at²
40 = 2 x t + 0.5 x 9.81 x t²
4.9t² + 2t - 40 = 0
t = 2.66 s or t = -3.06 s
So, time is 2.66 s.
Option C is the correct answer.