Answer:
The positive displacement from the midpoint of its motion at the speed equal one half of its maximum speed is 3.56 cm.
Explanation:
Maximum speed is :
v (max) = Aω
Speed v at any displacement y is given by
=
(
-
) ........................................................ i
And,
v =
v (max)
or, 2 × v = Aω .................................................... ii
Eliminating ω from equations i and ii,
=
(
-
)
or,
= (
)
=(
) 
or, y = 3.56 cm.
To develop this problem, it is necessary to apply the concepts related to the description of the movement through the kinematic trajectory equations, which include displacement, velocity and acceleration.
The trajectory equation from the motion kinematic equations is given by

Where,
a = acceleration
t = time
= Initial velocity
= initial position
In addition to this we know that speed, speed is the change of position in relation to time. So

x = Displacement
t = time
With the data we have we can find the time as well




With the equation of motion and considering that we have no initial position, that the initial velocity is also zero then and that the acceleration is gravity,





Therefore the vertical distance that the ball drops as it moves from the pitcher to the catcher is 1.46m.
<span>D) Electromagnetic radiation travels in the form of longitudinal waves.</span>
Answer:
Explanation:
Relative velocity is defined as the velocity of an object B in the rest frame of another object A.
Answer: <em>4</em><em>2</em><em>.</em><em>3</em><em>2</em><em> </em><em>ms-1</em>
Explanation:
v = u+ at
v = 24.4 + ( 3.2×5.6)
v = 42.32 ms-1