If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
Answer:
Explained below
Explanation:
Newton's first law of motion: This law states that an object will remain at rest or continue in constant motion except it's acted upon by an external force. In projectile motion, the horizontal component of velocity will remain unchanged because we ignore air resistance since no force is acting in that horizontal direction.
Newton's second law of motion: This law states that force is the product of mass and acceleration. In projectile the force acts downwards, thus f = mg.
But g = a since internal forces will cancel out.
Thus, F = ma
It is 72 km/h
I hope it helps
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get

The answer is 6.22 N because newtons are the unit used to measure force.
Answer:
K_a = 8,111 J
Explanation:
This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved
initial instant. Just before dropping the particles
p₀ = 0
final moment
p_f = m_a v_a + m_b v_b
p₀ = p_f
0 = m_a v_a + m_b v_b
tells us that
m_a = 8 m_b
0 = 8 m_b v_a + m_b v_b
v_b = - 8 v_a (1)
indicate that the transfer is complete, therefore the kinematic energy is conserved
starting point
Em₀ = K₀ = 73 J
final point. After separating the body
Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²
K₀ = K_f
73 = ½ m_a (v_a² + v_b² / 8)
we substitute equation 1
73 = ½ m_a (v_a² + 8² v_a² / 8)
73 = ½ m_a (9 v_a²)
73/9 = ½ m_a (v_a²) = K_a
K_a = 8,111 J