Answer:
the light emitting must be of greater wavelength
Explanation:
For this exercise we must use the Planck equation
E = h f
And the speed of light
c = λ f
f = c / λ
We replace
E = h c / λ
The wavelength of the green light is of the order of 500 nm, let's calculate the energy
E = 6.63 10⁻³⁴ 3 10⁸ /λ
E = 1,989 10⁻²⁵ /λ
λ = 500 nm = 500 10⁻⁹ m
E = 1,989 10⁻²⁵ / 500 10⁻⁹
E = 3,978 10⁻¹⁹ J
That is the energy of the transition for a transition is an intermediate state the energy must be less, this implies that the wavelength must increase. For the explicit case of a state with half of this energy
= E / 2
= 3,978 10⁻¹⁹ / 2 = 1,989 10⁻¹⁹
Let's clear and calculate
λ = h c / E
λ = 1,989 10⁻²⁵ / 1,989 10⁻¹⁹
λ = 1 10⁻⁶ m
Let's reduce to nm
λ = 1000 nm
This wavelength is in the infrared region
the light emitting must be of greater wavelength
Answer:
i = 0.3326 L
Explanation:
A fixed string at both ends presents a phenomenon of standing waves, two waves with the same frequency that are added together. The expression to describe these waves is
2 L = n λ n = 1, 2, 3…
The first harmonic or leather for n = 1
Wave speed is related to wavelength and frequency
v = λ f
λ = v / f
Let's replace in the first equation
2 L = 1 (v / f₁)
For the shortest length L = L-l
2 (L- l) = 1 (v / f₂)
These two equations form our equation system, let's eliminate v
v = 2L f₁
v = 2 (L-l) f₂
2L f₁ = 2 (L-l) f₂
L- l = L f₁ / f₂
l = L - L f₁ / f₂
l = L (1- f₁ / f₂)
.
Let's calculate
l / L = (1- 309/463)
i / L = 0.3326
Answer:
its the sound that a heart produces when beating, this can help doctors detect abnormalities
Answer:
steel
Explanation:
steel because steel has more power to hold something up, where bricks arent as stable
Answer:280.216j/kg°C
Explanation:
Mass of metal=0.0663kg
mass of water=0.395kg
Final temperature=27.4°C
Temperature of metal=241°C
Temperature of water=25°C
specific heat capacity of water=4186j/kg°C
0.0663xax(241-27.4)=0.395x4186x(27.4-25)
0.0663xax213.6=0.395x4186x2.4
14.16168a=3968.328
a=3968.328 ➗ 14.16168
a=280.216j/kg°C