Answer:
The solution would need 13.9 g of KCl
Explanation:
0.75 m, means molal concentration
0.75 moles in 1 kg of solvent.
Let's think as an aqueous solution.
250 mL = 250 g, cause water density (1g/mL)
1000 g have 0.75 moles of solute
250 g will have (0.75 . 250)/1000 = 0.1875 moles of KCl
Let's convert that moles in mass (mol . molar mass)
0.1875 m . 74.55 g/m = 13.9 g
The equation to calculate Density is Mass / Volume. You are given that the density is 5.45 and the mass is 65; 5.45 = 65 / v. So v = 65 / 5.45; v = 11.93 mL (or if you want your answer to consider significant figures, v = 12 mL).
Answer:
47.3 ml
Explanation:
The graduated cylinder is shown in the image attached.
Now we have to take a good look at the cylinder, the lines between 45 and 50 are 46, 47, 48 and 49. Even though the points in between two lines weren't graduated but we can intelligently guess the correct volume by observing the upper meniscus of the liquid. Hence the answer.
Answer:
X= Be
Y= B
Z=O
Explanation:
From the description of the compound XCl2, among the options listed only beryllium can form such compound with three lone pairs in the two chlorine atoms and no lone pair on the central atom X.
From the description of YCl3, only Boron among the options listed can form such a compound with no lone pair on the central atom and three lone pairs on each of the chlorine atoms.
From the description of ZCl2, only oxygen forms the compound OCl2 among the elements listed where oxygen possesses two lone pairs and each chlorine atom possesses three lone pairs each.