1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
3 years ago
10

The standard Gibbs energy of reaction, ÄG°, for the dissociation of phenol is 56.4 kJ mol-1 at 298 K. Calculate the pKa of pheno

l.
a.
9.88
c.
4.12
b.
22.8
d.
5.24​
Chemistry
1 answer:
Neporo4naja [7]3 years ago
4 0

Answer:

a.

9.88

Explanation:

ΔG = - 2.303 RT log Ka

ΔG is change in free energy at temperature T , Ka is equilibrium constant

- 56.4 x 10³ = 2.303 x 8.31 x 298 logKa

- log Ka = 9.88 .

pKa = 9.88 .

You might be interested in
What is the electron configuration for Fe?
blsea [12.9K]
The answer is C) [Ar]4s2 3d6
5 0
3 years ago
Read 2 more answers
To help relieve heartburn, a person should take medicine that is
Sav [38]

Prescribed to you by your doctor.

I would use an over the counter antacids for occasional heart burn. If there are symptoms of acid reflux I would suggest a histamine blocker, or H2-Blockers, such as Ranitidine (Zantac) and Famotidine (Pepcid)

3 0
4 years ago
Read 2 more answers
Calculate for the following electrochemical cell at 25°C, Pt H2(g) (1.0 atm) H (0.010 M || Ag (0.020 M) Ag if E (H) - +0.000 V a
viva [34]

Answer : The correct option is, (b) +0.799 V

Solution :

The values of standard reduction electrode potential of the cell are:

E^0_{[H^{+}/H_2]}=+0.00V

E^0_{[Ag^{+}/Ag]}=+0.799V

From the cell representation we conclude that, the hydrogen (H) undergoes oxidation by loss of electrons and thus act as anode. Silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.

The half reaction will be:

Reaction at anode (oxidation) : H_2\rightarrow 2H^{+}+2e^-    

Reaction at cathode (reduction) : Ag^{+}+1e^-\rightarrow Ag    

The balanced cell reaction will be,  

H_2+2Ag^{+}\rightarrow 2H^{+}+2Ag

Now we have to calculate the standard electrode potential of the cell.

E^o_{cell}=E^o_{cathode}-E^o_{anode}

E^o_{cell}=E^o_{[Ag^{+}/Ag]}-E^o_{[H^{+}/H_2]}

E^o_{cell}=(+0.799V)-(+0.00V)=+0.799V

Therefore, the standard cell potential will be +0.799 V

4 0
3 years ago
A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile's engine cooling system. If a car's cooli
Diano4ka-milaya [45]

Answer:

\large \boxed{109.17 \, ^{\circ}\text{C}}

Explanation:

Data:

50/50 ethylene glycol (EG):water

V = 4.70 gal

ρ(EG) = 1.11 g/mL

ρ(water) = 0.988 g/mL

Calculations:

The formula for the boiling point elevation ΔTb is

\Delta T_{b} = iK_{b}b

i is the van’t Hoff factor —  the number of moles of particles you get from 1 mol of solute. For EG, i = 1.

1. Moles of EG

\rm n = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1  gal}} \times \dfrac{\text{1000 mL}}{\text{1 L}} \times \dfrac{\text{1.11 g}}{\text{1 mL}} \times \dfrac{\text{1 mol}}{\text{62.07 g}} = \text{159 mol}

2. Kilograms of water

m = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1  gal}} \times \dfrac{\text{998 g}}{\text{1 L}} \times \dfrac{\text{1 kg}}{\text{1000 g}} = \text{8.88 kg}

3. Molal concentration of EG

b =  \dfrac{\text{159 mol}}{\text{8.88 kg}} = \text{17.9 mol/kg}

4. Increase in boiling point

\rm \Delta T_{b} = iK_{b}b = 1 \times 0.512 \, \, ^{\circ}\text{C} \cdot kg \cdot mol^{-1} \, \times 17.9 \cdot mol \cdot kg^{-1} = 9.17 \, ^{\circ}\text{C}

5. Boiling point

\rm T_{b} = T_{b}^{\circ} + \Delta T_{b} = 100.00 \, ^{\circ}\text{C} + 9.17 \, ^{\circ}\text{C} = \mathbf{109.17 \, ^{\circ}C}\\\rm \text{The boiling point of the solution is $\large \boxed{\mathbf{109.17 \, ^{\circ}C}}$}

7 0
3 years ago
Explain why some pesticides bioaccumulate whereas others do not
KatRina [158]
Bioaccumulation refers to the accumulation of chemicals in a living organism. The compound or chemical accumulates at a rate faster than it is being metabolized or excreted by the organism. Chemicals bioaccumulate by binding to the proteins and fats in an organism while others bioaccumulate through the repeated consumption of contaminated organisms. 

Pesticides containing chemicals that dissolve easily in fat but not in water tend to bioaccumulate. Pesticides that contain chemicals that can easily be metabolized by organisms do not bioaccumulate. In summary, the nature of the chemical used in pesticides and the capability of organisms to metabolize the said chemicals can dictate whether it will bioaccumulate or not.
7 0
3 years ago
Other questions:
  • In chemistry class, you are given a density column with golden syrup, water, and oil. Your teacher gives you an unknown substanc
    12·2 answers
  • When a theory is disaproved by further evidence, which of the following occurs?
    5·1 answer
  • Convert 1.5 mol Na to mass
    10·1 answer
  • What happened when you closed your hand around the sponge?
    5·1 answer
  • What is the partial pressure of the third gas, helium?
    13·1 answer
  • Hunter is copying an angle. His work so far follows. Explain the importance of his next step. Which is drawing A-line through A
    14·1 answer
  • 10. Anna wants to measure the water temperature in the pail. What instrument
    15·1 answer
  • • Take a tablespoonful of turmeric powder. Add a little water and make a paste. Apply turmeric paste on a sheet of plane white p
    6·1 answer
  • Which histone helps stabilize the solenoid structure?
    10·1 answer
  • Each iron atom has a mass of about 9 × 10–23 grams. Even a small grain of iron has an incredible number of atoms in it—about 1 x
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!