1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
3 years ago
15

A single-turn square loop carries a current of 16 A . The loop is 15 cm on a side and has a mass of 3.8×10^−2kg . Initially the

loop lies flat on a horizontal tabletop. When a horizontal magnetic field is turned on, it is found that only one side of the loop experiences an upward force. Find the minimum magnetic field, Bmin, necessary to start tipping the loop up from the table. Express your answer using two significant figures.
Physics
1 answer:
DiKsa [7]3 years ago
7 0

Answer:

The minimum magnetic field is 0.078 T.

Explanation:

Given that,

Current = 16 A

Side = 15 cm

Mass m= 3.8\times10^{-2}\ kg

Mass each segment in given square loop is

m=\dfrac{3.8\times10^{-2}}{4}

We need to calculate the torque due to gravity

Using formula of torque

\tau_{g}=2mg(\dfrac{L}{2})+mgL

\tau_{g}=2mgL

The torque due to magnetic field

\tau_{B}=FL

\tau_{B}=BIL^2

The equilibrium condition

\tau_{B}=\tau_{g}

Put the value into the formula

BIL^2=2mgL

B=\dfrac{2mgL}{IL^2}

B=\dfrac{2mg}{IL}

Put the value into the formula

B=\dfrac{2\times\dfrac{3.8\times10^{-2}}{4}\times9.8}{16\times15\times10^{-2}}

B=0.078\ T

Hence, The minimum magnetic field is 0.078 T.

You might be interested in
According to Newton’s first law of motion, a moving object that is not acted on by an unbalanced force will..
damaskus [11]
I believe it’s stay in motion if it’s not acted on by an unbalanced force
8 0
3 years ago
Read 2 more answers
Which of the following units are fundamental units in the S.I. system of measurement
Nataliya [291]
Is recommend attaching the answer choices; Meters, Liters, Grams are three basic ones
8 0
3 years ago
Read 2 more answers
If the magnitude of the electric field in air exceeds roughly 3 ✕ 106 N/C, the air breaks down and a spark forms. For a two-disk
Westkost [7]

Answer:

1.843 x 10^-5 C  

Explanation:

<u><em>Givens:   </em></u>

It is given that the air starts ionizing when the electric field in the air exceeds a magnitude of 3 x 10^6 N/C, which means that the max electric field can stand without forming a spark is 3 x 10^6 N/C.  

Also it is given that the radius of the disk is 50 cm, it is required to find out the max amount of charge that the disk can hold without forming spark, which means the charge that would produce the max magnitude of the electric field that air can stand without forming spark, and since we know that the electric field in between 2 disk "Capacitor" is given by the following equation  

E = (Q/A)/∈o                                (1)

Where,

Q: total charge on the disk.

A: the area of the disk.  

<u><em>Calculations:  </em></u>

We want to find the quantity of charge on the disk that would produce an electric field of 3 x 10^6 N/C, knowing the radius of the disk we can find the cross-section of the disk, thus substituting in equation (1) we find the maximum quantity of charge the disk can hold  

Q = EA∈o

   = (3 x 10^6) x (π*0.50) x (8.85 x 10^-12)  

  = 1.843 x 10^-5 C  

note:

calculations maybe wrong but method is correct

8 0
3 years ago
1.A Radio station broadcasts modern song on medium wave 350 Hz every day at ten o’clock in the morning. The velocity of radio wa
love history [14]

Answer:

ans \:  = \boxed{{4.8 \times 10}^{ - 4}  Hz}

Explanation:

given \to \\  f_{r} = 350 \:  \\ v_{r} =  {3 \times 10}^{8}  \\ but \to \\ v = f \gamma   \to \:  \gamma  =  \frac{v}{f}  : hence \to \\  \gamma _{r} =  \frac{v_{r}}{f_{r}}   =  \frac{3 \times 10^{8} }{350}   =  \boxed{857,142.85714 \: m}\\ therefore \to \\ given \to \\  f_{w} = water \: frequency = \:  \boxed{  ?}\:  \\ v_{w} =  14 50 \\ but \to \\ v = f \gamma   \to \:  \gamma  =  \frac{v}{f}  : hence \to \\  \gamma _{w} =  \frac{v_{w}}{f_{w}}   =  \frac{1}{100}  \times \gamma _{r}  =  \frac{1}{100}  \times 857,142.85714  \\\gamma _{w}  =  \boxed{8,571.4285714 \: m} : hence \to \:  \\ f_{w} =  \frac{v_{w}}{ \gamma _{w}}  =  \frac{1450}{8,571.4285714}  =  \boxed{0.1691666667} \\ if \: the \: number \: of \: times = \boxed{ x} \\ f_{r} (x)=f_{w} \\ (x) =  \frac{f_{w}}{f_{r}}  =  \frac{0.1691666667}{350}  = 0.0004833333 \\ hence \to \\ the  \: frequency  \: of \:  the \:  radio  \: wave  \: is \to \:   \boxed{{4.8 \times 10}^{ - 4}  }\:  \\ that  \: of  \: the \:  wave  \: created  \: in  \: the  \: water.

♨Rage♨

8 0
3 years ago
Two blocks with masses 1 and 2 are connected by a massless string that passes over a massless pulley as shown. 1 has a mass of 2
Bess [88]

Answer:

The acceleration of M_2 is  a =  0.7156 m/s^2

Explanation:

From the question we are told that

    The mass of first block is  M_1 =  2.25 \ kg

    The angle of inclination of first block is  \theta _1 =  43.5^o

    The coefficient of kinetic friction of the first block is  \mu_1  = 0.205

      The mass of the second block is  M_2 = 5.45 \ kg

     The angle of inclination of the second block is  \theta _2 =  32.5^o

      The coefficient of kinetic friction of the second block is \mu _2 = 0.105

The acceleration of M_1 \ and\  M_2 are same

The force acting on the mass M_1 is mathematically represented as

     F_1 = T -  M_1gsin \theta_1 - \mu_1 M_1 g cos\theta_1

=> M_1 a = T -  M_1gsin \theta_1 - \mu_1 M_1 g cos\theta_1

Where T is the tension on the rope

The force acting on the mass M_2 is mathematically represented as    

  F_2 =  M_2gsin \theta_2 - T -\mu_2 M_2 g cos\theta_2

   M_2 a =  M_2gsin \theta_2 - T -\mu_2 M_2 g cos\theta_2

At equilibrium

  F_1 =  F_2

So

 T -  M_1gsin \theta_1 - \mu_1 M_1 g cos\theta_1 =M_2gsin \theta_2 - T -\mu_2 M_2 g cos\theta_2

making a the subject of the formula

    a =  \frac{M_2 g sin \theta_2 - M_1 g sin \theta_1 - \mu_1 M_1g cos \theta - \mu_2 M_2 g cos \theta_2 }{M_1 +M_2}

substituting values a =  \frac{(5.45) (9.8) sin (32.5) - (2.25) (9.8) sin (43.5) - (0.205)*(2.25) *9.8cos (43.5) - (0.105)*(5.45) *(9.8) cos(32.5) }{2.25 +5.45}

    => a =  0.7156 m/s^2

     

3 0
4 years ago
Other questions:
  • An object with an initial velocity of 3.0 m/s has a constant acceleration of 2.0 m/s2. When its speed is 19.0 m/s, how far has i
    6·1 answer
  • Features that describe motion of an object
    11·1 answer
  • a ball is dropped from a height of 120 meters. If it takes 2.00 seconds for a ball to fall 60 meters, how long will it take the
    12·1 answer
  • Which of the following is a displacement?
    11·2 answers
  • A spaceship accelerates from 0m/s to 40m/s in 5 seconds. What is the acceleration of the spaceship
    7·1 answer
  • How does uniform motion relate to velocity and acceleration?
    7·1 answer
  • A glass of water sitting in direct sunlight evaporates over time. Explain this phase change in terms of the types of heat transf
    7·2 answers
  • A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper, he
    7·1 answer
  • A heat engine cycle is executed with steam in the saturation dome. The pressure of steam is 1.1 MPa during heat addition and 0.3
    14·1 answer
  • How much time would it take a train locomotive running at 6000 Horsepower to use the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!