The frequency of this wave is 3
The constant is the temperature of the air that the plants get.
The independent variable is the thing that YOU control. That's the amount of sunlight each plant gets.
The <em>dependent variable</em> is anything that's caused by changes in the independent variable. That's the growth of the plants.
Answer:
24.8m/s
Explanation:
Given data
m1= 10kg
u1=25m/s
m2=17kg
u2=16m/s
v1=10m/s
v2=??
Applying the conservation of linear momentum
m1u1+m2u2=m1v1+m2v2
substitute
10*25+17*16=10*10+17*v2
250+272=100+17v2
522=100+17v2
522-100=17v2
422=17v2
Divide both sides by 17
v2= 422/17
v2= 24.8 m/s
Hence the velocity of the red cart is 24.8m/s in the opposite direction of the blue cart
Answer:
The farther star will appear 4 times fainter than the star that is near to the observer.
Explanation:
Since it is given that the luminosity of the 2 stars is same thus they radiate the same energy per unit time
Consider a spherical wave front of energy 'E' that leaves both the stars (Both radiate 'E' as they have same luminosity)
This Energy is spread over the whole surface area of sphere Thus when the wave front is at a distance 'r' the energy per unit surface area is given by

For the star that is twice away from the earth the distance is '2r' thus we will receive an energy given by
Hence we sense it as 4 times fainter than the nearer star.
speed of the car = 27 m/s
speed of truck ahead = 10 m/s
relative speed of car with respect to truck

relative deceleration of car

now the distance before they stop with respect to each other is given by



so it will come at the same speed of truck after 20.6 m distance and hence it will not hit the truck as the distance of the truck is 25 m from car
Part b)
Distance traveled by car before it stops is given by



so it will stop after it will cover total 52.1 m distance
Part c)
time taken by the car to stop



now the distance covered by truck in same time

now after the car will stop its distance from the truck is

<em>so the distance between them is 11.5 m</em>