Answer:
A)segment A"B"= AB / 2
Step-by-step explanation:
Triangle A″B″C″ is formed using the translation (x + 2, y + 0) and the dilation by a scale factor of one half from the origin. Which equation explains the relationship between segment AB and segment A"B"?
coordinate plane with triangle ABC at A(-3, 3), B(1, -3), and C(-3, -3)
A)segment A"B"= AB / 2
B)segment AB = segment A"B"/ 2
C)segment AB / segment A"B"= 1/2
D)segment A"B" / segment AB = 2
A"B" = AB / 2
Because
1. translations do not change the lengths of segments, so (x+2, y+0) preserves the length of AB, i.e. mA'B' = mAB
2. Dilation causes the new segment to be transformed to a new length according to the old length * the scale factor of (1/2).
Therefore A"B" = (1/2)AB, or AB/2.
20x + 15k is the answer we just have to remove the bracket and add the terms
hope it helps
Answer:
Inequalities are,
y ≥ 4x + 2
y ≥ 2
Step-by-step explanation:
Solid yellow line of the graph attached passes through two points (0, -2) and (1, 2).
Let the equation of this line is,
y = mx + b
Slope of the line =
m =
m = 4
Y-intercept 'b' = -2
Equation of the line will be,
y = 4x - 2
Since shaded area is on the left side of this solid line so the inequality representing this region will be,
y ≥ 4x - 2
Another line is a solid blue line parallel to the x-axis.
Shaded region (blue) above the line will be represented by,
y ≥ 2
Therefore, the common shaded area of these inequalities will be the solution of the given inequalities.
Answer:150
Step-by-step explanation:
0.15 x 1000
15/100 x 1000
(15 x 1000) ➗ (100 x 1)
15000 ➗ 100=150