Sadly, no. The statement kind of has some appropriate words in it, but it's badly corrupted. Objects don't fall to Earth at a rate of 9.8 m/s, and the force that accelerates them downward is not a centripetal one.
Answer:
5.4
Explanation:
900/10=90 and 90(60)=5400 meters. 5400/100=5.4
A :-) for this question , we should apply
a = v - u by t
Given - u = -2 m/s
v = -10 m/s
t = 16 sec
Solution -
a = v - u by t
a = -10 - -2 by 16
a = -12 by 16
( cut 12 and 16 because 2 x 6 = 12 and
2 x 8 = 16 )
( cut 6 and 8 because 2 x 3 = 6 and
2 x 4 = 8 )
a = 3 by 4
a = 0.75 m/s^2
.:. The acceleration is 0.75 m/s^2.
Answer:
Explanation:
The former is the case of constructive interference and the later case relates to destructive interference.
For listener, path difference is the separation of loudspeaker as listener is not standing in between the speaker.
If λ be the wave length
For constructive interference
19 = n λ
For destructive interference
29 = (2n+1) λ / 2
= n λ + λ / 2
= 19 + λ / 2
10 = λ / 2
λ = 20 cm
= 0. 20 m
Answer:
<u>because of the doppler effect</u>
Explanation:
<em>Remember</em>, the doppler effect refers to the changes in sound (frequency of sound) observed by a person who is in a position relative to the wave source.
In this example, we notice as the train comes closer to the boy, the sound becomes louder also increasing the pitch slightly, the doppler effect sets in when the train passes the boy because the boy notices a decrease in the pitch of the moving train.
We learn from the change in the observed sound of the train that the frequency of the sound is determined by the distance of the observer from the wave source.
In other words, the closer the source of the sound to the observer; the faster it travels to the observer, however, the farther it is; the lesser it is; the greater the sound heard.