Answer:
Weight is used most often for measuring solid whereas volume is used most often for measuring liquid.
Explanation:
Weight is used most often for measuring solid, because solids have definite shape. Weight is usually expressed in Newton (N) because it is a function of mass and gravity. ( weight = mass x gravity).
Whereas volume is used most often for measuring liquid, usually expressed in cubic meter (m³) because liquids have no definite shape, rather they occupy the volume of their container.
Cups
teaspoon
tablespoon
liters
milliliters
gallons
pints
tons
inches
Answer:
The diagram assigned B
explanation:
Check the direction of the two vectors, their resultant must be in the same direction.
Answer:
B) the change in momentum.
Explanation:
The impulse is defined as the product between the force applied on an object (F) and the duration of the collision (
):
(1)
We can rewrite the force by using Newton's second law, as the product between mass (m) and acceleration (a):

So, (1) becomes

Now we can also rewrite the acceleration as ratio between the change in velocity and change in time:
. If we substitute into the previous equation, we find

And the quantity
is equivalent to the change in momentum,
.
Answer: See the explanation below.
Explanation: For this assignment, I chose to display how eclipses are created.
My model was made utilizing a 3D displaying device program for all intents and purposes. The items utilized are three models I made for this presentation, Earth, the moon, and the sun. These three models will be utilized for the showcase.
The light that shines from the sun would create a shadow on the moon. The moon would then catch the light that should've arrived on Earth, making the shadow we call an eclipse. Earth gets a shadow of the moon and the remainder of Earth is lit up from the rest of the light, making an eclipse.
The individual I demonstrated my project to was [<em>Someone you know</em>], [<em>Pronoun</em>] said it precisely took after the occasion of an eclipse. The light from the sun being shined on to the moon rather than the Earth, creating the shadow we call an eclipse.