Answer:
Explanation:
Magnetic field near current carrying wire
= 
i is current , r is distance from wire
B = 10⁻⁷ x 
force on second wire per unit length
B I L , I is current in second wire , L is length of wire
= 10⁻⁷ x
x 33 x 1
= 3234 x 
This should balance weight of second wire per unit length
3234 x
= .075
r =
x 10⁻⁷
= .0043 m
= .43 cm .
Answer:
12500 V
Explanation:
The electric field in the gap of a parallel-plate capacitor is uniform, so the following relationship between electric field strength, potential difference and distance can be used:

where
is the potential difference between the plates
E is the electric field strength
d is the distance between the plates
For the capacitor in this problem, we have


Substituting, we find

<span>The charged balloon will stick to a neutral wall because of the Static Electricity:
</span>
The matter is formed by atoms and these atoms are composed of electrons, protons and neutrons (the electrons have a negative charge, the protons have a positive charge and the neutrons have no charge).
As the balloon is charged (It gained electrons), and the charge of the same sign repel each other, when it approaches the wall, the electrons of this wall will move away, and the positive charges (protons) will remain in the nearest area to the balloon. As the charges of different signs are attracted, the balloon will be stuck to the wall.