Answer:
The comparisons are;
The height of the bromine in the 50 ml beaker will be twice that of the 100 ml beaker
The measurement of the volume with the 50 ml beaker will be more accurate than the measurement taken with the 100 ml beaker, because the differences in the height of the bromine in the 50 ml beaker is more obvious than the differences measured with the 100 ml beaker.
The actual volume of bromine in both beakers will be equivalent
Explanation:
The properties of a liquid are;
1) The volume of a liquid is relatively fixed at conditions that are suitable for it to remain in the liquid state compared to the volume occupied by a gas
2) A liquid will assume the shape of a container in which it is placed
3) The surface of a liquid in a container is flat due in order that the attractive forces between the molecules of the liquid at the surface and inside the body of the liquid should be in equilibrium
Therefore, given that the volume of the Bromine is measured in 50 ml beaker and a 100 ml beaker, there will be differences in the measured height of the same volume of bromine in each beaker.
Question: Find acceleration of a refrigerator 30s after a person begins pushing it at a force of 400 N, If the mass of the refrigerator is 10 kg.
Answer:
40 m/s²
Explanation:
Applying,
F = ma................Equation 1
Where F = Force applied to the refrigerator, m = mass of the refrigerator, a = acceleration of the refrigerator.
make a the subject of the equation
a = F/m............ Equation 2
From the question,
Given: F = 400 N, m = 10 kg
Substitute these values into equation 2
a = 400/10
a = 40 m/s²
Answer:
I'm 3 percent it is b soooooo
F= Force
M=Mass
A= acceleration
F=N
Mass= in grams or kilo grams (mostly kg)
A= m/s
Answer:

Explanation:
Since the system is in international space station
so here we can say that net force on the system is zero here
so Force by the astronaut on the space station = Force due to space station on boy
so here we know that
mass of boy = 70 kg
acceleration of boy = 
now we know that


now for the space station will be same as above force



