54.15 g
First you start out with the equation n=cv (n= moles, c=molarity, v= volume)
You’re going to multiply 0.10M by 3.30L to get an answer of 0.33 moles of Ca(NO3)2
From there you’re gonna convert the moles to grams to get your answer, first you have to find the molar mass of Ca(NO3)2
This can be done by finding adding the molar mass of each individual substance
The answer you should get for the molar mass is 164.1 g
From there just multiply the number of moles you calculated (0.33 mol) by the molar mass (164.1 g) and your answer is going to be 54.15 g Ca(NO3)2
<h3>
Answer:</h3>
The pressure increases by 10% of the original pressure
Thus the new pressure is 1.1 times the original pressure.
<h3>
Explanation:</h3>
We are given;
- Initial temperature as 30°C, but K = °C + 273.15
- Thus, Initial temperature, T1 =303.15 K
- Final temperature, T2 is 333.15 K
We are required to state what happens to the pressure;
- We are going to base our arguments to Pressure law;
- According to pressure law, the pressure of a gas and its temperature are directly proportional at a constant volume
- That is; P α T
- Therefore, at varying pressure and temperature

Assuming the initial pressure, P1 is P
Rearranging the formula;
[tex]P2=\frac{P1T2}{T1}[/tex]


= 1.10 P
The new pressure becomes 1.10P
This means the pressure has increased by 10%
We can conclude that, the new pressure will be 1.1 times the original pressure.
Answer:
Explanation:
Fe⁺²(aq) + ClO₂(aq) → Fe⁺³(aq) + ClO₂⁻(aq)
Here oxidation number of Fe is increased from +2 to +3 , so Fe is oxidised .
The oxidation number of Cl is reduced from + 4 to +3 so Cl is reduced .
So ClO₂(aq) is oxidising agent and Fe⁺²(aq) is reducing agent .
Answer:
As you move across a period, the atomic mass increases because the atomic number also increases. ... The atomic mass for any given atom mainly comes from the mass of the protons and neutrons.
Explanation: