Answer: x=38/7
Step-by-step explanation:
<span>assume z = ax for simplicity
z(z) = a(ax) = a^2x
let a^2x = 1/16x and solve for a </span>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em><em>⤴</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
Maximum area of the rectangle is 
<u>Explanation:</u>
<u></u>
Considering the dimensions to be in cm

Putting the value of x = 3

Therefore, maximum area of the rectangle is 
If you get rid of the whole number in that fraction, you will have 3/2.
So the opposite of that would be 2/3.
I believe the answer is 2/3.