Chemical energy is the kind of energy stored in the bonds formed by atoms and molecules in chemical compounds and elements. This energy is released during a chemical reaction and heat is often given out in the process. These kind of reactions where heat is given out as a by product are called exothermic reactions.
The major factor that determines how much chemical energy a substance has is the mass of that substance. Mass is defined as the amount of matter in a substance.
The higher the mass of a substance, the more concentrated that substance is and subsequently the greater the number of atoms and molecules.
Logically, the higher the number of atoms and molecules then the greater the number of bonds in that substance and subsequently the more the amount of chemical energy stored therein.
Lower than 7 is acid greater than 7 is a base
The temperature of a liquid can exceed its boiling point. An example is water. Although at ordinary pressure of 1 atm, the boiling point is 100 degrees, water can still exist in higher temperatures but this time in another state. Superheated steam is the term used for water whose temperature has higher than the boiling point
Answer
find out the number of moles and use the molar ratio (numbers in front of formulas (in this case they are all 1) to determine how many moles of each product you are going to get theoretically
n=m/M is the equation to use to get moles here
30.8 gm/32.04 g/mol=0.9612 moles of the methanol and also of the formaldehyde so
0.9612 moles of the formaldehyde x molar mass (M) 30.73 g/mol= 29.54 gm which is the theoretical yield you already have the actual yield of 24.7 gm
then divide the actual by the theoretical to get the % yield which is 83.6%
Explanation: