If you're moving, then you have kinetic energy.
If you're not at the bottom yet, then you still have
some potential energy left.
Uhhhh...you should have paid attention in class, just saying...
Answer:
Replacement-Level Fertility
Another important population characteristic that differ btw develop nation and developing nations is relates to births is replacement-level fertility. Replacement-level fertility is the fertility rate that will result in the replacement of the parents in the population. Again, in an ideal world, the human replacement-level fertility rate would be exactly two. This would mean that each couple would produce two offspring that would replace them in the population. If this occurred, then the human population would stay at a stable rate
Answer:
the current value is 
Explanation:
The computation of the value of the current is given below:

Hence, the current value is 
Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>