Answer:
θ = 12.95º
Explanation:
For this exercise it is best to separate the process into two parts, one where they collide and another where the system moves altar the maximum height
Let's start by finding the speed of the bar plus clay ball system, using amount of momentum
The mass of the bar (M = 0.080 kg) and the mass of the clay ball (m = 0.015 kg) with speed (v₀ = 2.0 m / s)
Initial before the crash
p₀ = m v₀
Final after the crash before starting the movement
= (m + M) v
p₀ = 
m v₀ = (m + M) v
v = v₀ m / (m + M)
v = 2.0 0.015 / (0.015 +0.080)
v = 0.316 m / s
With this speed the clay plus bar system comes out, let's use the concept of conservation of mechanical energy
Lower
Em₀ = K = ½ (m + M) v²
Higher
= U = (m + M) g y
Em₀ = 
½ (m + M) v² = (m + M) g y
y = ½ v² / g
y = ½ 0.316² / 9.8
y = 0.00509 m
Let's look for the angle the height from the pivot point is
L = 0.40 / 2 = 0.20 cm
The distance that went up is
y = L - L cos θ
cos θ = (L-y) / L
θ = cos⁻¹ (L-y) / L
θ = cos⁻¹-1 ((0.20 - 0.00509) /0.20)
θ = 12.95º
Answer:
0°
Explanation:
The angle between force and displacement should be 0° in order to get the maximum work done.
Work done = Force x dcosФ°
Ф is the angle between force and displacement
When Ф is zero, the maximum work done is attained
When Ф is 90, the minimum work is done, in fact, work done is 0
The power dissipated across a component can be calculated through the formula P=I^2xR
Substituting the values in we get P=(0.5)^2x10=2.5W
Answer:(10.69, 11.436)
Explanation:
Given
initial height of ball is 2 m
height of basket is 3.05 m
Launching angle

y=1.05
equation of trajectory of ball is given by

for x=12.27

u=10.69
for x=11.73

u=11.436 m/s
Thus range of speed is (10.69, 11.436)