The current is defined as the amount of charge Q that passes through a given point of a wire in a time

:

Since I=500 A and the time interval is

the charge is

One electron has a charge of

, therefore the number of electrons that pass a point in the wire during 4 minutes is

electrons
I'm trying to think of something that will give you the biggest bang for your buck, meaning what would give you the most number of energy transformations in their use.
Wind energy uses those great big windmills that transform wind into electrical energy. The wind is caused by the sun (which has nuclear energy, light energy and the earth's rotation which is not related to the sun but is mechanical energy). To start with you use mechanical energy. That energy drives a generator that stores it's energy in a battery. You have changed electrical energy into chemical energy. The batteries, on a calm day take over and provide electrical energy that must be transported to the consumers using it. Proponents of wind energy say that it is pollution free. It's not exactly true. The batteries used have to be manufactured (not a clean industry) and when they wear out, they pollute the environment if they cannot be recharged with new battery plates and acid (chemical).
Added to which wind energy is very noisy (sound energy) which has been linked to serious diseases.
<em><u>2</u></em><em><u>0</u></em><em><u>.</u></em><em><u>0</u></em><em><u>M</u></em><em><u>/</u></em><em><u>S</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>HORIZONTAL</u></em><em><u> </u></em><em><u>VELOCITY</u></em><em><u> </u></em><em><u>OF</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>BALL</u></em><em><u> </u></em><em><u>JUST</u></em><em><u> </u></em><em><u>BEFORE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>REA</u></em><em><u>CHES</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>GROUND</u></em>
<em><u>1</u></em><em><u>2</u></em><em><u>.</u></em><em><u>2</u></em><em><u> </u></em><em><u>SECONDS</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>APPROXIMATE</u></em><em><u> </u></em><em><u>TOTAL</u></em><em><u> </u></em><em><u>TIME</u></em><em><u> </u></em><em><u>REQUIRED</u></em><em><u> </u></em><em><u>FOR</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>BALL</u></em>
The greenhouse effect is the process by which radiation from a planet's atmosphere warms the planet's surface to a temperature above what it would be without this atmosphere. Radiatively active gases in a planet's atmosphere radiate energy in all directions
Complete question is:
A purse at radius 2.10 m and a wallet at radius 3.15 m travel in uniform circular motion on the floor of a merry-go-round as the ride turns. They are on the same radial line. At one instant, the acceleration of the purse is
. At that instant and in unit-vector notation, what is the acceleration of the wallet?
Answer:
Explanation:
Given: Purse is at radius, 
Wallet is at radius, 
acceleration of the purse,


Both the purse and wallet would have same angular velocity
.

