The sun’s huge mass gives it a strong gravitational pull. Because of this gravitational pull, planets that are closer to the sun tend to have different motion than planets that are further away from the sun, because the gravity becomes stronger the closer you get. I hope this helped!
Answer:
The time is
Explanation:
From the question we are told that
The period of the circuit is 
Generally voltage maximization of the capacitor occurs during the voltage minimization of the inductor and vise versa
So the time between the voltage maximization of the capacitor and that of the inductor is mathematically represented as

=> 
=>
Time taken by the water balloon to reach the bottom will be given as

here we know that


now by the above formula



now in the same time interval we can say the distance moved by it will be


so it will fall at a distance 15.7 m from its initial position
<span>So we want to know why is there a difference between the force of gravity on the Moon and the force of gravity of the Earth. So the gravitational force between two objects depends on the masses of both objects. That can be seen from Newtons universal law of gravity. F=G*m1*m2*(1/r^2). So lets say we are holding an object of mass m=1kg on a height r=1m on the Moon and we are holding the same object on the Earth also on the same height of r=1m. The Gravitational force on the Earth will be Fg=G*M*m*(r^2) where M is the mass of the Earth. The force between the moon and that object will be Fg=G*n*m*(r^2), where n is the mass of the moon. Since mass of the Moon is much smaller than mass of the Earth, The gravitational force between the Moon and that body will be almost 6 times smaller than the gravitational force between the Earth and that body. So the correct answer is B. </span>