Answer:

Given:
Mass (m) = 3.0 kg
Uniform speed (v) = 20 m/s
Length of string (r) = 40 cm = 0.4 m
To Find:
Tension in the string (T)
Explanation:
Tension (T) is the string will be equal to centripetal force (
).

Substituting value of m, v & r in the equation:


Tension in the string (T) = 3 kN
Answer:
48.51ms / 174.6 km/h
Explanation:
y = 1/2 x g x t^2 v = g x t
when y = 120m
120 = 1/2 x 9.8 x t^2
t^2 = 24.49
t = 4.95s
when t = 4.95s
v = 9.8 x 4.95
v = 48.51 m/s = 174.6 km/h
I'd say its realistic. But I don't really know that sry
Answer:
0.00091
Explanation:
(9x10^9) (2.6x10^-6) (1.4x10^-6) / 36
(9,000,000,000) (0.0000026) (0.0000014) /36
|
23,400(0.0000014) /36
|
0.03276 /36
|
0.00091
Answer: 200m/min
Explanation:
Divide 10000m by 160m/min, you will get the answer 62.5. You then subtract 12.5 from 62.5 to understand what you will need your answer for the other person’s speed will be. 10000m divided by 50min is 200m/min.
Since 1m/s=3.6 km/h, we can conclude that 10.0m/s = 36 km/h