Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Answer:
20 Ω
Explanation:
Voltage, current, and resistance are related by Ohm's law:
V = IR
40 V = (4 A) R
R = 10 Ω
The total resistance of the circuit is 10 Ω.
Resistors in parallel have a total resistance of:
1/R = 1/R₁ + 1/R₂
1 / (10 Ω) = 1 / (20 Ω) + 1/R₂
R₂ = 20 Ω
The Equivalent resistance is :

The solution is in attachment for solution ~
Answer:
PE is related to the ability to do work, If an item is sitting on a shelf
it has potential energy relative to its position on the floor, However, if the object were to fall it would hit the floor with a KE equal to the PE that it had sitting on the shelf.
Sounds are caused by compressional waves in the air - when a piano key is struck or a TV is turned on, then compressional waves are produced in the surrounding air due to a disturbance. The human ear recognizes the disturbed air as due to the object that created the disturbance.