Answer:
denotes the molar hydrogen ion concentration
Explanation:
<span>Answer:
A 0.04403 g sample of gas occupies 10.0-mL at 289.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
--------------------------------------...
Seems like I did a problem very similar to this--this must be the "B" test. But the halogen was different.
25.305% C/12 = 2.108
74.695% Cl/35.5 = 2.104
So the empirical formula would be CH. However, there are many compounds which fit this bill, so we have to use the gas data. (And I made, in the previous problem, the simplifying assumption that 289C and 1.10 atm would offset each other, so I'll do that, too.)
0.044 grams/10 ml = x/22.4 liters
0.044g/0.010 liters = x/22.4 liters
22.4 liters/0.010 liters = 2240 (ratio)
2240 x .044 = 98.56 (actual atomic weight)
CCl = 35.5+12 or 47.5, so two of those is 95 grams/mole.
This is sufficiient to distinguish C2CL2, (dichloroacetylene)
from C6CL6 (hexachlorobenzene) which would
mass 3 times as much.</span>
The negative side of another magnet
Answer:
a. alkyne
b. alkane
c. alkyne
d. alkene
Explanation:
The general formula for each class of compound is given below
Alkane:
Alkene:
Alkyne: (assuming single multiple bonds)
Now let us classify according to the above formulas:
a. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
b. It has two hydrogen atoms more than the two times of carbon atoms hence, it's alkane
c. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
d. It has hydrogen atoms two times of carbon atoms hence, it's alkene