Answer:
of 0.056 M HF solution is 
Explanation:
cM 0 0
So dissociation constant will be:
Give c= 0.056 M and
= ?
Putting in the values we get:
Thus
of 0.056 M HF solution is 
PH = -log([H+])
[H+] = 10^(-pH)
[H+] = 10^(-9)
[H+][OH-] = Kw
Kw = 1.0*10^-14 at 25 degrees celsius.
[OH-] = Kw/[H+] = (1.0*10^-14)/(1*10^-9) = 1.0*10^-5
The concentration of OH- ions is 1.0*10^-5 M.
Answer:
The correct answer is because they have same number of protons but different number of neutrons.
Explanation:
Isotopes are atoms of the same element but differ only in the number of neutrons in the nucleus, i.e. they have same atomic number but different mass number.
Mass number is affected as they have different number of neutrons, thus effecting their physical properties.
The number of electrons and protons are same, i.e. their atomic number is same and thus their chemical properties are same as chemical properties are determined by the atom’s electronic configuration and that relates to number of protons.
Answer:
pH of buffer solution is 7.0
Initial pH of Weak acid is 3.27
Final pH of weak acid is 3.07
Amount of NaOH added is 1ml
Explanation:
Titration is a process in which acid and base are introduced together until a neutral solution is achieved whose pH value is near to buffer solution which is 7.0, the pH value for acid is below 7 while pH value for base is above 7.
Assume 1 tsp is approximately can hold 5 mL liquid.
Given the dose of medicine = 1.5 tsp
Converting 1.5 tsp to mL:
= 7.5 mL
Given the specific gravity of the medicine = 1.23
That means density of the medicine with respect to water will be 1.23
As the density of water is 1 g/mL
We can take density of the medicine to be 1.23 g/mL
Calculating the mass of medicine in grams:

9.225 g medicine is present in one dose.