Apsidal precession—The major axis of Moon's elliptical orbit rotates by one complete revolution once every 8.85 years in the same direction as the Moon's rotation itself.
Answer : The partial pressure of and is, 216.5 mmHg and 649.5 mmHg
Explanation :
According to the Dalton's Law, the partial pressure exerted by component 'i' in a gas mixture is equal to the product of the mole fraction of the component and the total pressure.
Formula used :
So,
where,
= partial pressure of gas
= mole fraction of gas
= total pressure of gas
= moles of gas
= total moles of gas
The balanced decomposition of ammonia reaction will be:
Now we have to determine the partial pressure of and
Given:
and,
Given:
Thus, the partial pressure of and is, 216.5 mmHg and 649.5 mmHg
Answer to his question is C
Answer:
0.712 mol
Explanation:
The easiest way to do this is to use a proportion.
1 mol of copper = 63.5 grams (check this using your periodic table).
x mol of copper = 45.2 grams
1/x = 63.5 / 45.2 Cross multiply
63.5 x = 1 * 45.2 Divide by 63.5
x = 45.2/63.5
x = 0.712 mol Answer to 3 sig digs
Answer:
V₂ = 5.97 L
Explanation:
Given data:
Initial temperature = 9°C (9+273 = 282 K)
Initial volume of gas = 6.17 L
Final volume of gas = ?
Final temperature = standard = 273 K
Solution:
Formula:
The Charles Law will be apply to solve the given problem.
According to this law, 'the volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure'
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 6.17 L × 273K / 282 k
V₂ = 1684.41 L.K / 282 K
V₂ = 5.97 L