Answer:
The answer is soooo simple
Step-by-step explanation:
its c
Answer:
N = 920(1+0.03)^4t
Step-by-step explanation:
According to the given statement a car repair center services 920 cars in 2012. The number of cars serviced increases quarterly at a rate of 12% per year after 2012.
Rate is 12 % annually
rate in quarterly = 12/4= 3%
We will apply the compound interest equation:
N=P( 1+r/n)^nt
N= ending number of cars serviced.
P= the number of cars serviced in 2012,
r = interest rate
n = the number of compoundings per year
t= total number of years.
Number of compoundings for t years = n*t = 4t
Initial number of cars serviced=920
The quarterly rate of growth = n=4
r = 3%
The growth rate = 1.03
Compound period multiplied by number of years = 920(1.03)^4t
Thus N = 920(1+0.03)^4t
N = number of cars serviced after t years...
Answer:
5(x-1)
Step-by-step explanation:
Answer: 0.0241
Step-by-step explanation:
This is solved using the probability distribution formula for random variables where the combination formula for selection is used to determine the probability of these random variables occurring. This formula is denoted by:
P(X=r) = nCr × p^r × q^n-r
Where:
n = number of sampled variable which in this case = 21
r = variable outcome being determined which in this case = 5
p = probability of success of the variable which in this case = 0.31
q= 1- p = 1 - 0.31 = 0.69
P(X=5) = 21C5 × 0.31^5 × 0.69^16
P(X=5) = 0.0241
Answer:
The probability of the flavor of the second cookie is always going to be dependent on the first one eaten.
Step-by-step explanation:
Since the number of the type of cookies left depends on the first cookie taken out.
This is better explained with an example:
- Probability Miguel eats a chocolate cookie is 4/10. The probability he eats a chocolate or butter cookie after that is <u>3/9</u> and <u>6/9</u> respectively. This is because there are now only 3 chocolate cookies left and still 6 butter cookies left.
- In another case, Miguel gets a butter cookie on the first try with the probability of 6/10. The cookies left are now 4 chocolate and 5 butter cookies. The probability of the next cookie being chocolate or butter is now <u>4/9</u> and <u>5/9</u> respectively.
The two scenarios give us different probabilities for the second cookie. This means that the probability of the second cookie depends on the first cookie eaten.