I assume the heights are 160 ft and 1480 ft.
The two heights are unknown, so we will use variable h to help solve the problem.
The shorter building, building A, has height h.
Since building A is shorter by 160 ft, then building B is taller by 160 ft, so the height of building B is h + 160.
Now we add our two heights to find the total height.
h + h + 160 is the total height.
We can write it as 2h + 160
We are told the total height is 1480 ft, so we let 2h + 160 equal 1480, and we have an equation.
2h + 160 = 1480
Subtract 160 from both sides
2h = 1320
Divide both sides by 2
h = 660
h + 160 = 820
Building A measures 660 ft.
building B measures 820 ft.
"Per" essentially means "divided by." To find pieces per ounce, divide pieces by ounces.
(252 pieces)/(14 ounces) = (252/14) pieces/ounce = 18 pieces/ounce
ANSWER
D 5
EXPLANATION
The diagonals bisect each other so,
AE=CE
This implies that
3x+4+3x+4=38
6x+8=38
Group similar terms
6x=38-8
6x=30
x=5
Answer:
4951 students
Step-by-step explanation:
If there was 99 students from each state, that would make the total to be:
99 * 50 = 4950
We can use the pigeon hole principle to make this the minimum number required.
The pigeon hole principle basically tells us that if you have more "pigeons" than "holes" then there must be one hole with multiple objects in it.
So, using this idea, we see that:
we need at least 1 more to ensure this
So, min number required would be
4950 + 1 = 4951