2 different elements- carbon and oxygen.............................
Explanation:
Let us assume that the ratio for the given reaction is 1:1.
Therefore, we will calculate the moles of
as follows.
Moles of
solution = molarity × volume (L)
= 0.0440 M × 0.014 L
= 0.000616 moles
Moles of excess EDTA = 0.000616 moles
Also, the initial moles of EDTA will be calculated as follows.
Total initial moles of EDTA = 0.0600 M × 0.025 L
= 0.0015
Therefore, moles of EDTA reacted with
will be as follows.
= 0.0015 - 0.000616
= 0.00088 moles
Since, we have supposed a 1 : 1 ratio between
and EDTA
.
So, moles of
= 0.00088 moles
Now, we will calculate the molarity of
as follows.
Molarity of
solution =
=
= 0.015 M
Thus, we can conclude that the original concentration of the
solution is 0.015 M.
Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;

= 0.8
The rate-out
= 
= 
We can say that:

where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12

Integration of the above linear equation =

so we have:



∴ 
Since A(0) = 12
Then;



Hence;



∴ the concentration at 10 minutes is ;
=
%
= 0.0456667 %
= 0.046% to three decimal places