Answer:
Isopropyl propionate
Explanation:
1. Information from formula
The formula is C₆H₁₂O₂. A six-carbon alkane would have the formula C₆H₁₄. The deficiency of two H atoms indicates the presence of either a ring or a double bond.
2. Information from the spectrum
(a) Triplet-quartet
A 3H triplet and a 2H quartet is the classic pattern for a CH₃CH₂- (ethyl) group
(b) Septet-doublet
A 1H septet and a 6H doublet is the classic pattern for a -CH(CH₃)₂ (isopropyl) group
(c) The rest of the molecule
The ethyl and isopropyl groups together add up to C₇H₁₂.
The rest of the molecule must have the formula CO₂ and one unit of unsaturation. That must be a C=O group.
The compound is either
CH₃CH₂-COO-CH(CH₃)₂ or (CH₃)₂CH-COO-CH₂CH₃.
(d) Well, which is it?
The O atom of the ester function should have the greatest effect on the H atom on the adjacent carbon atom.
The CH of an isopropyl is normally at 1.7. The adjacent O atom should pull it down perhaps 3.2 units to 4.9.
The CH₂ of an ethyl group is normally at 1.2. The adjacent O atom should pull it down to about 4.4.
We see a signal at 5.0 but none near 4.4. The compound is isopropyl propionate.
3. Summary
My peak assignments are shown in the diagram below.
Answer:
710,33 g NO2
Explanation:
2 C8H18 + 25 O2 → 16 CO2 + 18 H2O
(800 g octane) / (114.2293 g C8H18/mol x (25/2)) = 87.54 mol O2 used to combust the octane
= 15.44 mol O2 used to form NO2
O2 + 2NO → 2NO2
(15.44 mol O2) x (2/2) x (46.0056 g NO2/mol) = 710,33 g NO2
Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
The best substance to heat up the fastest would be blue fire