Answer:
22.73s
Explanation:
The reaction is a second order reaction, we know this by observing the unit of the slope.
rate constant = k = 0.056 M-1s-1
the initial concentration of BrO- [A]o = 0.80 M
time = ?
Final concentration [A]t= one-half of 0.80 M = 0.40M
1 / [A]t = kt + 1 / [A]o
1 / 0.40 = 0.056 * t + 1 / 0.80
t = (2.5 - 1.25) / 0.056
t = 22.73s
Answer:
The correct answer is pOH= 11
Explanation:
From the aqueous acid-base equilibrium we know that
pH + pOH = 14
If we know pH, we can calculate pOH as follows:
pOH = 14 - pH
In this problem, the solution has a pH of 3, so:
pOH = 14 - 3 = 11
Answer:
Option D. ZnCl₂ and H₂
Explanation:
From the question given above, the following equation was obtained:
2HCl + Zn —> ZnCl₂ + H₂
Products =?
In a chemical equation, reactants are located on the left side while products are located on the right side i.e
Reactants —> Products
Now, considering the equation from the question i.e
2HCl + Zn —> ZnCl₂ + H₂
The products are ZnCl₂ and H₂ because from our discussion above, we said that products are only located on the right side of chemical equation.
Thus, option D gives the correct answer to the question.
Molality can be expressed by moles of solute over
kilograms of solvent. The question asks the molality of 0.25m NaCl. 0.25m NaCl
is equal to 0.25 moles of NaCl over 1 kg of water.
Since we are told that 1L of air contains 0.21L of oxygen, you can use the conversion (0.21L O₂)/(1L air). That means that you can just multiply 6.0L by 0.21L to get 1.26L of O₂.
that means that the lungs can hold about 1.26L of oxygen.
I hope this helps. Let me know if anything is unclear.