Answer:
0.143 g of KCl.
Explanation:
Equation of the reaction:
AgNO3(aq) + KCl(aq) --> AgCl(s) + KNO3(aq)
Molar concentration = mass/volume
= 0.16 * 0.012
= 0.00192 mol AgNO3.
By stoichiometry, 1 mole of AgNO3 reacts with 1 mole of KCl to form a precipitate.
Number of moles of KCl = 0.00192 mol.
Molar mass of KCl = 39 + 35.5
= 74.5 g/mol
Mass = molar mass * number of moles
= 74.5 * 0.00192
= 0.143 g of KCl.
Increased density decreases the speed of sound in a medium. While increased density can mean increased rigidity, or stiffness, it is not always the case. Greater density can be due to each molecule or atom having more momentum, and being slower to respond to the vibration of its neighbor.
Answer:
0.50 M
Explanation:
Given data
- Mass of sodium sulfate (solute): 7.1 g
- Volume of solution: 100 mL
Step 1: Calculate the moles of the solute
The molar mass of sodium sulfate is 142.04 g/mol. The moles corresponding to 7.1 grams of sodium sulfate are:

Step 2: Convert the volume of solution to liters
We will use the relation 1 L = 1000 mL.

Step 3: Calculate the molarity of the solution

The valence electron ring is full. The ring has 8 electrons already.
This question can be easily confused with. During the early times, organic compound are directly associated with living beings, people, plants and animals. That is somewhat true. The definition of organic compounds are compounds that contain carbon. So, it is true that most of the compounds in our body are organic. But you may confuse it to the abundance of elements in the body, which is oxygen. However, the most abundant element, besides carbon, in organic compounds is Hydrogen. You will notice this obviously in the organic compounds like alkanes, alkenes, alkynes, carbohydrates, lipids, hormones and proteins. Their general chemical formula usually involves Carbon and Hydrogen.